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Making reasonable regional carbon dioxide emission reduction plan is the only way to realize the sustainable 

development of China's power industry. Therefore, on the basis of fully considering the potential of energy 

saving and emission reduction of regional electric power, the space of structural emission reduction and the 

feasibility of Engineering emission reduction, and considering the power demand of regional economic 

development, the plan of carbon dioxide emission reduction of electric power is formulated to give full play to 

the environmental protection advantages of distributed generation, which has strong practical application 

value and guiding significance. In this paper, a multi-objective programming method for multi-distributed power 

grids based on quantum genetic algorithm and multi-objective optimization strategy is proposed. By planning 

distributed power supply reasonably, this method not only reduces carbon emissions, but also takes into 

account the economy of distribution network construction. 

1. Introduction 

Energy provides the material basis for social and economic development. In recent years, more and more 

countries are suffering from energy shortage due to the soaring demand, depletion of fossil energy and the 

restricted development of nuclear plants. The situation is worsened by the deterioration of eco-environment, 

the aging of traditional power system, and the growing need of high-quality energy. Facing these problems, 

the only way out is to develop and utilize renewable energy. The utilization of renewable energy can be 

promoted by distributed power supply, also known as distributed generation. As opposed to traditional 

centralized power supply, the distributed power supply makes full use of various scattered but accessible 

energy sources, including renewable ones like wind energy, solar energy, biomass energy and tidal energy 

and non-renewable ones like natural gas. It has a wide range of rated power, ranging from tens of kilowatts to 

tens of megawatts. In general, distributed power supply is located near the user, highly modularized and 

supported by advanced information control techniques. Previous studies agree that distributed power supply 

can improve the efficiency of energy use, optimize energy supply structure and ensure safe and reliable power 

supply (Ferdinand et al., 2017; Erolkantarci and Mouftah, 2015; Nacef et al., 2016; Zhang et al., 2016). 

The impact of distributed generation on the power grid is closely related to the installation location and 

capacity of the distributed generation. The existing studies on distributed power supply mostly pursue the 

minimal loss. However, more and more objectives have been raised in recent years, such as the minimal 

investment, the minimal operation cost, the optimal power quality, and the minimal power loss. These goals 

sometimes contradict each other (Chen et al., 2013; Xing et al., 2014). In addition to flow and operation 

constraints, grid planning for distributed power supply must consider economic cost, power quality, system 

stability, environmental benefit and so on. In light of the above, this paper firstly reviews the economic and 

technical optimization problems involved in grid access of distributed power supply, and then establishes a 

distributed power supply programming model with the aim to minimize the active network loss, investment and 

operation cost of the grid and the voltage offset of the load node. Then, a multi-objective mixed pure quantum 

genetic algorithm was developed to solve the nonlinear, multi-constraint and multi-objective programming 

problem of grid planning for distributed power supply, and was compared with traditional multi-objective 
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evolutionary algorithm. Finally, the proposed model was applied to a real case to verify the effect of the 

proposed algorithm in solving the grid planning for distributed power supply. 

2. Multi-objective grid planning model for distributed power supply 

2.1 Multi-objective grid planning model for distributed power supply 

The typical constrained multi-objective problem can be described as follows: 
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wheref(X) ∈ Rn is a vector with n objective functions, which form the target space;gq(X) ≤ 0 is a q inequality 

constraint function, which constitutes a feasible solution area; X = [x1 , x2 , ⋯ xn, ] ∈ Rnis are n vectors with m 

decision variables, which make up the decision space. 

The following are several basic definitions for multi-objective optimization: 

(1) Pareto dominance: solution X1 has Pareto dominance over solution X2 (X1< X2), if and only if the following 

conditions are fulfilled at the same time: 
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(2) Pareto optimality: X is the Pareto optimal solution, if and only if XXX ii : . 

(3) Pareto optimality set: the collection of all Pareto optimal solutions. 

(4) Pareto optimal frontier: the area formed by all Pareto optimal solutions corresponding to the objective 

function value. 

2.2 Objective function 

A rational grid plan for distributed power supply should improve the power quality and optimize the power flow 

without sacrificing the economic benefits. Therefore, the objective function must include both economic and 

technical targets. Specifically, the economic targets are the minimal investment and operation cost and the 

minimal power loss, while the technical target is the minimal voltage offset of load node, that is, the maximum 

stability margin of static voltage (Fan et al., 2015; Fan, 2018). Considering these targets, objective function of 

the mathematical model of multi-objective grid planning for distributed power supply can be expressed as: 
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where Ploss is the active network loss; C is the investment and running cost; ∆U is the voltage offest of load 

node; Gk(I,j) is the conductance of branch K; NDG is the total number of nodes in the grid for distributed power 

supply; Nl is number of branches in the grid; Ndis the number of load nodes; δij is the voltage phase angle 

difference between nodes i and j; Ui and Uj are the voltage amplitudes of node i and j, respectively; Ul is the 

actual voltage; Uspec is the expected voltage; Umax is the maximum allowable voltage offset of load node; n is 

the service life; r is the discount rate; X is an indicator of the presence of distributed power supply (X=0 means 

the distributed power supply is not installed at the corresponding position while X=1 means the distributed 

power supply is installed at the corresponding position); PDGi, CaZ,I and COM,i(unit: 104yuan/kWh) are the 

capacity, maintenance cost and installation cost of the distributed power supply at node i, respectively. 

There are three inequality constraints and one equality constraint for our model.  

The equality constraint targets the power flow of the grid: 
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3. Grid planning based on multi-objective mixed pure quantum genetic algorithm 

3.1 Typical quantum genetic algorithm 

In quantum computation, the information is stored physically in two-state quantum systems, i.e. qubits. Each 

qubit can represent the states of |0〉 and |1〉, and a random superposition state between these two strates. In 

other words, a qubit may be |0〉or|1〉, or the middle state between the two. Thus, a quantum state can be 

expressed as: 

10                                                                                                                                                     (5) 

where α  and β  are the probability amplitudes of |0〉  and |1〉 ., respectively. Both amplitudes satisfy the 

normalization condition. 
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where |α|2 and |β|2are the probabilities of observing the quantum state of 0 and 1, respectively. 

In atypical quantum genetic algorithm, the chromosome structure can be coded by qubit code as follows: 
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where qj’ are the chromosomes of individual j in generation i;  k is the number of qubits in each coded gene; m 

is the number of chromosomes, which corresponds the number of variables in a function. 

The quantum genetic algorithm relies on quantum gate action and update to complete evolutionary search. 

With high search efficiency and good convergence, this algorithm can maintain population diversity and 

prevent pressure problem.  Compared with traditional genetic algorithm, the quantum genetic algorithm 

achieves a high level of diversity and simultaneity through quantum chromosome coding. 

3.2 Implementation of multi-objective mixed pure quantum genetic algorithm 

(1) The main ideas 

The multi-objective mixed quantum genetic algorithm was inspired by quantum computation and multi-

objective evolution. The main ideas are as follows: improving the computing precision through qubit coding of 

real numbers, bolstering optimization efficiency and convergence speed based on the mixed nature of qubit 

probabilities and superimposed feature of quantum state, promoting population evolution through multi-

objective optimization strategies like non-dominated sorting, elite retention and hierarchical clustering, and 

maintaining population diversity to ensure the convergence to the global optimal solution set of Pareto. 

(2) Quantum chromosome coding 

The variables of the proposed algorithm were represented by a real qubit instead of multiple binary qubits. 

Then, the quantum chromosome coding structure can be expressed as: 
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where 1 ≤ j ≤ Np, with Np being the population size;xi
t ∈ [ximin

t , ximax
t ]is a real variable;θt

i  is the corresponding 

angle of the variable. This angle must satisfy the following equation: 
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In this way, the information of each chromosome can be expressed simultaneously in real number space and 

phase space. 

(3) Population classification 

Based on non-dominated sorting, the population was classified according to the level of noninferior solutions 

of individuals. The non-dominated sorting algorithm needs to calculate the parameters ni and Si for each 

individual of the population, with ni being the serial number of individual i in the population, and Si being the 

individual set dominated by individual i in the population. The fast non-dominated sorting can be implemented 

through the following steps: 

a) Identify all ni=0 individuals in the population and save them in the current set F1. 
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b) For each individual i in the current set F1., save the individuals dominated by individual i in the set Si. 

Traverse each individual ω in Si, execute nω = nω − 1, and, if nω = 0, save ω in the set H. 

c)Taking the individuals in F1.as the first non-dominated individuals, and H as the current set, repeat the 

above steps until the whole population is stratified. 

d)According to the serial number, assign a virtual fitness value to each level of individual. The target value is 

positively correlated with the non-dominance degree of the individual. 

(4) Elite retention  

The elite retention aims to save the good individuals in the parent generation directly into the child generation. 

According to hierarchical clustering, the crowding distance was calculated and F1. was sorted in the following 

steps: 

a) Let Zt(Zt = Qt ⋃ Rt ) be the population synthesized from parent population Qt and child population Rt. 

Perform non-dominated sorting of Z and determine all the non-dominated solutions by F = (F1, F2, ⋯ ). 

b) Calculate the crowding distance of Fi and executeQt+1 = Qt ⋃ Fi and i=i+1until |Qt+1| + |Fi| ≤ Np. 

c)According to the niche theory, introduce crowding distanceσ(i)is introduced to sort all the non-inferior front-

end F1.. Then rank is negatively correlated with the crowding distance. Select the best (Np − |Qt+1|) solutions 

in F1. that is, Qt+1 = Qt+1 ⋃ Fi[1: (Np − |Qt+1|)]. 

d)Assign a virtual fitness value to each level of individual according to the non-inferior stratification and 

crowding distance. The target value is positively correlated with the non-dominance degree of the individual. 

Meanwhile, the niche was adjusted automatically to protect the good individuals, resulting in evenly distributed 

results in the target space. Specifically, the crowding distance can be calculated as: 
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where σ(i)  is the crowding distance of individual i in the population;  σ(i, o)  is the crowding distance of 

individual irelative to the target individual o; finext,o is the next adjacent value to fi,o,;fiform,o is the next adjacent 

value to fi,o; fomax and fomin  are the maximum and the minimum values, respectively. The crowding distance 

of individual i relative to the target individual o needs to be sorted in ascending order by the value of o. 

(5)Quantum probabilities of crossover and chaotic mutation 

The non-dominated sorting and allocation of virtual fitness values shows that the fitness-based traditional 

methods cannot determine the evolution direction of non-dominated individuals with the same rank. Therefore, 

the objective function value in the target space was regarded as the vector in the n-dimensional space, a 

vector modulus fitness function was adopted as the evaluation criterion, and the model of the vector was 

viewed as the fitness value of the individual to guide the evolution. In this way, the following equation can be 

established: 
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where fjo(x) represents the zeroth is the o-th objective function in target space j. 

According to cross probability, the next generation can be produced from a real number of chromosomes as 

follows: 
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Considering the ergodicity and initial value sensitivity of chaos, the chaotic sequence C was introduced to 

restrict the amplitude perturbation of the angle θ corresponding to all the real chromosomes in the current 

generation.  

The variation in the phase angle can be expressed as 
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3.3 Grid planning for distributed power supply based on the proposed algorithm 

In this paper, the position and capacity of distributed power supply are mixed with the integer and real 

numbers of qubit chromosome. Then, the decision variable can be expressed by the integer variable and the 

real number angle defined in equations (13) and (14), respectively. Taking the target grid as a power quality 

reporting node, the active network loss, economic cost and voltage offset of load node were solved, together 

with the power flow. Figure 1 illustrates the application of the proposed algorithm in the grid planning for 

distributed power supply. 

start

Input parameters of the grid and set the 

variable ranges of the proposed algorithm.

t=0

Create a random initial population.

Perform fast non-dominanted sorting and allocate 

virtual fitness according to population classification.

Calculate the power flow and the target values 

considering the constraints.
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Figure 1: Workflow of the proposed algorithm 

4. Case study 
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Figure 2: Structure of Dunhua grid 

The proposed algorithm was applied to Dunhua Grid of Jilin Province, China, and the results were discussed 

in details. The structure of the said grid in early 2018 is displayed in Figure 2. As the operator of the grid, 

Dunhua Rural Electric Power Co., Ltd. supplies over 130 million kWh power annually to 501 enterprises and 
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75,000 residents in 543 villages and 16 towns. The entire grid consists of 16 power supply units, 91,953 

<10kV distribution transformers, 1,596 10kV distribution transformers, 1,369km <0.4kV lines and 1,772m 

10(6)kV lines. 

The data on power generation and load between September 2017 and February 2018 were collected from 

Dunhua grid. Considering the three targets of reliable supply, low cost and greenness, two grid plans were 

prepared as follows: 

Plan 1: Optimizing the design of micro-grid system for cooling, heating and power supply, and stopping the 

operation of micro-gas turbine unit. 

Plan 2: Optimizing the design of micro-grid system for combined cooling, heating and power supply system, 

and operating micro-gas turbine unit at fixed thermal power. 

The two plans were compared in terms of the three targets. As shown in Table 1, the micro-grid system for 

combined cooling, heating and power supply systemin Plan 2 outperformed the micro-grid system for cooling, 

heating and power supply in Plan 1 by 1.736 million yuan in economic cost, although it costed 3,755 more 

than the latter in operation. The good performance of Plan 2 is attributable to the efficiency of power 

generation and utilization of the cogenerated energy. 

Table 1: Comparison between the two plans 

 Investment 

(106yuan) 

Running 

(106yuan) 

Total Cost 

(106yuan) 

Plan1 7.43646 0.00159 7.43805 

Plan2 5.69271 0.03914 5.70185 

5. Conclusions 

After reviewing the economic and technical optimization problems in grid access of distributed power supply, 

this paper sets up a distributed power supply programming model with the aim to minimize the active network 

loss, investment and operation cost of the grid and the voltage offset of the load node. Then, a multi-objective 

mixed pure quantum genetic algorithm was developed to solve the nonlinear, multi-constraint and multi-

objective programming problem of grid planning for distributed power supply. Finally, the proposed model was 

applied to a real case to verify the effect of the proposed algorithm in solving the grid planning for distributed 

power supply. Suffice it to say that the established model can desirably complete the grid planning for 

distributed power supply. 
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