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The topological structure of univolatility curves of ternary homogeneous mixtures is derived from the boiling 
temperature and univolatility hypersurfaces geometry. The key point is the concept of the generalized 
univolatility curve in the 3D state space, which allows putting in evidence the bifurcation mechanism of the 
sets of the univolatility curves and to tune-up an efficient numerical algorithm for their computation by a simple 
integration of a system of ordinary differential equations. Two examples of different two types of bifurcation are 
presented by varying pressure in order to modify the topology of the ternary residue curve map.  

1. Introduction 

Preliminary conceptual design of distillation processes is based on the knowledge of the mixture 
thermodynamics and on the analysis of the residue curve maps (RCMs). The change of the volatility order 
between two components i and j in a ternary diagram can be detected by tracing the associated univolatility 
curve (or α-curve) ߙ௜,௝, i.e., the set of points of equality between the distribution coefficients ܭ௜ and ܭ௝ (Kiva et 

al., 2003). Univolatility curves divide the composition space into different K-order regions, even for zeotropic 
mixtures. Their knowledge is essential to design extractive distillation process (Gerbaud and Rodriguez-Donis, 
2014). Though the computation of univolatility curves starting at azeotropic points is straightforward, the 
detection of univolatility curves not associated with azeotropes is a more complicated and time-consuming 
process. A ternary diagram may contain up to 3 families of α-curves defined by their respective index. 
Zhvanetskii et al. (1988), Reshetov et al. (1990) and Reshetov and Kravchenko (2007, 2010) formulated the 
main principles of classification of the univolatility curves. They propose to distinguish the univolatility curves 
of type ߙప,ఫതതതത connecting two points on the same binary side of the composition triangle from the curves of type ߙప,ఫധധധധ connecting two different binary sides. Transitions between types ߙప,ఫതതതത and ߙప,ఫധധധധ can occur as univolatility 

curves depend on pressure and temperature of vapor – liquid equilibrium (VLE). 

The new point of view on the univolatility curves proposed in this paper is based on the key role played by the 
temperature among the state variables of the problem. We show that the topological structure of univolatility 
curves follows from mutual arrangement of the boiling temperature surface and the three univolatility 
hypersurfaces in the 3D composition – temperature state space. By introducing the notion of a generalized 
univolatility curve, the computations of the univolatility curves in the inner part of the composition triangle 
reduces to an integration of a system of ordinary differential equations.  Under variation of the pressure, the 
topological structure of the univolatility curves changes. The exact conditions of the bifurcation are related to 
the degeneracy of the generalized univolatility curve. The proposed geometrical construction is illustrated by 
two examples: hexafluorobenzene - methyl propionate - benzene and methyl ethyl ketone – cyclohexane – 2-
methylpropanol, showing two types of possible transitions in the topology of the univolatility curves under 
pressure variation.  
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2. 3D geometry of univolatility curves 

2.1 Univolatility in the temperature-concentration state space 

Consider an open evaporation process of a homogeneous ternary mixture maintained under vapour liquid 
equilibrium (VLE) condition at constant pressure. Denote by ݔ௜,  and ܶ the mole fractions of the components	௜ݕ
in the liquid and vapour phases and the temperature. Since ݔଵ + ଶݔ +  ଷ=1, only two mole fractions areݔ
independent. Hence the state space of the problem has dimension 3 and can be represented as a 3D space 
with Cartesian coordinates (ݔଵ, ,ଶݔ ܶ). The boiling temperature ܶ = ௕ܶ(ݔଵ,  of the mixture is implicitly defined	ଶ)ݔ
by the equation  Φ(ݔଵ, ,ଶݔ ܶ) =෍ݕ௜(	ݔଵ, ,ଶݔ ܶ)ଷ

௜ୀଵ − 1 = 0 (1) 

The VLE condition can be described in terms of distribution coefficients ܭ௜ so that ݕ௜(ݔூ, ,ଶݔ ܶ) = ,ூݔ)௜ܭ ,ଶݔ  .௜ݔ	(ܶ
The sets of points on the concentration plane (ݔூ, ௜௝ߙ ଶ) whereݔ = ௄೔௄ೕ = 1	form the univolatility curves between 

components i and j. In the 3D complete concentration – temperature state space, Equation (1) defines the 
boiling temperature surface of the system, while the univolatility relations Ψ௜	௝(ݔଵ, ,ଶݔ ܶ) = ,ଵݔ)௜ܭ ,ଶݔ ܶ) − ,ଵݔ)௝ܭ ,ଶݔ ܶ) = 0, ݅, ݆ = 1,2,3 (2) 

describe three univolatility hyper-surfaces. The intersections of these three univolatility hyper-surfaces with the 
boiling temperature surface give rise to the generalized univolatility curves in the concentration–temperature 
space, which projects onto univolatility curves on the concentration plane. Figure 1 illustrates these concepts 
for the case of acetone (ݔଵ) – ethyl acetate (ݔଶ) – benzene mixture, which has one univolatility curve ߙଶଷ = 1. 

 

Figure 1: Mixture acetone (ݔଵ) – ethyl acetate (ݔଶ) – benzene: boiling temperature surface, 2-3 univolatility 
hyper-surface, ߙଶଷ = 1 univolatility curve. (adapted from Shcherbakova et al., 2017). 

By construction, the generalized univolatility curve belongs both to the boiling temperature and to the 
univolatility hypersurfaces. So it is necessarily orthogonal to the two normal directions to these surfaces 
defined by the gradients of the functions Φ and Ψ௜௝. Hence, the vector ܷ௜௝ = ∇Φ × ∇Ψ௜௝ defines the tangent 
direction of the generalized univolatiliy curve (see in Figure 1). More precisely, given an initial point, the 
generalized univolatility curve between the components i and j can be computed by solving the system of 
ordinary differential equations: ݔଵሶ = ଵܷ௜௝(ݔଵ, ,ଶݔ ܶ), ଶሶݔ = ܷଶ௜௝(ݔଵ, ,ଶݔ ܶ), ሶܶ = ܷଷ௜௝(ݔଵ, ,ଶݔ ܶ) (3) 
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2.2 Bifurcation of the topological structure of univolatility curves 

Kiva et al. (2003) provided an exhaustive description of the properties of the univolatility curves. Each pair of 
the components of the mixture may have one or more univolatility curves. Therefore the related RCM may 
contain up to three families of univolatility curves of different index ij. Each binary azeotrope gives rise to an 
univolatility curve, while the intersection point of three of such curves of different families corresponds to a 
ternary azeotrope. In addition, there exist univolatility curves not connected to azeotropes. All these properties 
are the base of the topological classification of the univolatility curves proposed in Zhvanetskii et al (1988), 
Reshetov et al. (1990) and Reshetov and Kravchenko (2010). The curves of type ߙప,ఫതതതത connect two points on 

the same binary side of the composition triangle, while the ߙప,ఫധധധധ type curves connect two opposite binary sides. 

The transition between two types may occur under the modification of the process conditions.   
In the case of isobaric distillation, variation of the pressure causes the transformation of the shape of the 
boiling temperature surface, and consequently the shape of the univolatility curves. At the critical value of the 
pressure, the boiling temperature surface and one of the univolatility hyper-surfaces have a common tangent 
point, in other words, the vector ܷ௜௝ is zero. An accurate computation shows that  ܷଷ௜௝ = ଵܷ௜௝ ߲ ௕߲ܶݔଵ + ܷଶ௜௝ ߲ ௕߲ܶݔଶ  (4) 

This means that there is a one to one correspondence between the singular points of the generalized 
univolatility curve and its projection on the concentration triangle. Therefore the exact bifurcation conditions for 
the curve ߙ௜௝ = 1 can be found by solving the following system of equations with respect to ݔଵ∗, ,∗ଶݔ ܶ∗ and ܲ∗ : Φ(ݔଵ∗, ,∗ଶݔ ܶ∗, ܲ∗) = 0, Ψ௜,௝(ݔଵ∗, ,∗ଶݔ ܶ∗, ܲ∗) = 0, ଵܷ௜௝(ݔଵ∗, ,∗ଶݔ ܶ∗, ܲ∗) = 0, ܷଶ௜௝(ݔଵ∗, ,∗ଶݔ ܶ∗, ܲ∗) = 0	 (5) 

At ܲ = ܲ∗ the ߙ −curve under consideration has a singular point at the point ݔଵ∗,  ଶ∗ on the concentrationݔ
triangle. In principle, such a point can be of elliptic of hyperbolic type. The latter describes the transition 
between ߙప,ఫതതതത and ߙప,ఫധധധധ types, the corresponding univolatility curve is formed of two braches meeting at the 

singular point.  
It is worth to underline that in general the singular points of the univolatility curves are not related to 
azeotropes, though in some exceptional cases they can coincide with singular azeotropes or pure states, as it 
is illustrated in Section 3.2. This fact makes the numerical computation of the univolatility curves much simpler 
than the computation of the residue curves.  

2.3 From geometry to numerical computation 

The system of Equations (3) can be used for the efficient numerical computation of the univolatility curves by 
using the standard Runge-Kutta schemes. The details of this method can be found in Shcherbakova et al. 
(2017). The integration starts at the points on the binary sides of the concentration triangle satisfying the 
univolatility condition. They can be found by analysing the behaviour of the binary distribution coefficients ܭ௜, 
as proposed in Kiva et al. (2003). 
For example, in order to compute a curve ߙ௜௝ = 1 starting from the 13 binary side, one need first to find a point (ݔଵ,௜௝଴ , 0, ଵܶ,௜௝଴ ) in temperature - concentration state space. Then the rest of the curve can be computed by 

solving the following initial value problem:  ݀ݔଵ݀ݏ = ݀௜௝	 ଵܷ௜௝(ݔଵ, ,ଶݔ ܶ)‖ܷ௜௝(ݔଵ, ,ଶݔ ܶ)‖ , ݏଶ݀ݔ݀ = ݀௜௝	ܷଶ௜௝(ݔଵ, ,ଶݔ ܶ)‖ܷ௜௝(ݔଵ, ,ଶݔ ܶ)‖ , ݏ݀ܶ݀ = ݀௜௝ ܷଷ௜௝(ݔଵ, ,ଶݔ ܶ)‖ܷ௜௝(ݔଵ, ,ଶݔ ܶ)‖  (6) 

ଵ(0)ݔ = ଵ,௜௝଴ݔ 	, ଶ(0)ݔ = 0, 				ܶ(0) = ଵܶ,௜௝଴ ,    ݀௜௝ = ݊݃݅ݏ ቀ ଶܷ௜௝൫ݔଵ,௜௝଴ , 0, ௜ܶ௝଴ ൯ቁ (7) 

Here s is the arc-length of the curve. The normalized form of Equation (6) avoid the eventual stiffness 
problem, while the coefficient ݀௜௝=±1 indicates the direction pointing inside the composition triangle. In the 

next Section, the results of the application of the prototype of this algorithm realized in Mathematica 9 are 
presented. 

3. Case studies 

The efficiency of the algorithm described above is illustrated by detecting the bifurcations conditions for two 
ternary mixtures. Residue curve map of hexafluorobenzene - methyl propionate - benzene has the particularity 
of having two binary azeotropes for the mixture hexafluorobenzene - benzene. The second example, methyl 
ethyl ketone - cyclohexane – 2-methylpropanol, exhibits the bifurcation of the univolatlity curve through the 
formation of the singular pure state.  
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3.1 Hexafluorobenzene-methyl propionate-benzene 

Figure 2 illustrates the bifurcation of the topological structure of ߙ-curves of the ternary mixture 
hexafluorobenzene (ݔଵ) – methyl propionate (ݔଶ) – benzene (the origin) through the formation of the hyperbolic 
singular point described in Section 2.2. 

  

 
 

  

Figure 2: Hexafluorobenzene (ݔଵ) - methyl propionate (ݔଶ) – benzene (the origin), RCM and 
univolatility curves: ߙଵଶ = 1 (dashed line), ߙଵଷ = 1 (continuous line), ߙଶଷ = 1 (dot dashed line) at 
different pressures. 

The computations in Figure 2 were done applying the algorithm described in Section 2.  The VLE parameters 
(see in Table 1) were computed according to Wilson’s model using the data from Myagkova (2007).  The 
vapor pressure was computed by using the models and their constants available in DIPPR database.   

At 1 atm (Figure 2a) the binary mixture benzene - hexafluorobenzene exhibits two azeotropes ܣଵଷ௔ ଵଷ௕ܣ , . Each 
of these gives rise to a univolatility curve of ߙଵ,ଷധധധധധ type. The binary azeotrope ܣଶଷ	(benzene-methyl propionate) 
is the origin of a ߙଶ,ଷധധധധധ curve. The other curve of the same index, of ߙଶ,ଷതതതതത type, links two non-azeotropic points on 
the 12-side. The binary azeotrope ܣଵଶ (hexafluorobenzene – methyl propionate) gives rise to the unique ߙଵ,ଶധധധധധ 
type curve. Such a complex structure of ߙ-curves reflects a peculiar topology of the underlying RCM 

(a) P = 1 atm (b) P = 1.55 atm 

(e) P = 4.40 atm (f) P = 4.75 atm 

(d) P = 4.39 atm (c) P = 2 atm
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characterized by two ternary azeotropes: a saddle (ܣଵଶଷ௔ ) and a stable node (ܣଵଶଷ௕ ). Under higher values of the 
pressure, the two curves ߙଶ,ଷധധധധധ get closer, and at P ≈ 1.55 atm (Figure. 2b) the first bifurcation occurs: the two 
curves ߙଶ,ଷധധധധധ form a singular cross-shape configuration described in Section 2.2. With the infinitesimal pressure 
increase, this singular configuration splits into a ߙଶ,ଷധധധധധ curve connected to ܣଶଷ and a new ߙଶ,ଷതതതതത curve linking two 
non-azeotropic points on the 13-side (Figure 2c). Meanwhile the two branches of the ߙଵ,ଷ curve get closer as 
well as two ternary azeotropes. At P ≈ 4.39 atm (Figure 2d) the second bifurcation occurs in the ߙଵ,ଷ curve. 
The singular configuration splits into a ߙଵ,ଷധധധധധ and ߙଵ,ଷതതതതത branches with the further pressure increase and at P ≈ 
4.40 atm (Figure 2e) the two ternary azeotropes merge into a unique singular azeotrope ܣଵଶଷ∗  of saddle-node 
type, which disappears at higher values of pressure (Figure 2f). 

Table 1: Example 1, Wilson’s model binary interaction parameters  (Myagkova, 2007), Cal/mom 

component I  component j ߣ௜௝ ߣ௝௜ 
hexafluorobenzene methyl propionate 7.854 -35.152 
hexafluorobenzene Benzene 1218.177 -445.561 
methyl propionate Benzene 98.176 7.033 

3.2 Methyl ethyl ketone – cyclohexane – 2-methyl propanol 

The next example shows the transition between  ߙప,ఫതതതത and ߙప,ఫധധധധ types with formation of the singularity at one of 

the pure states of the system in the mixture methyl ethyl ketone – cyclohexane - 2-methyl propanol. The 
computations were done using the NRTL model for the binary coefficients (Table 2). The vapor pressure was 
computed by using the models and their constants available in DIPPR database.  

 

 

 
Figure 3: Methyl ethyl ketone (ݔଵ) - cyclohexane (ݔଶ) – 2-methyl propanol (the origin), RCM and univolatility 
curves: ߙଵଶ = 1(dashed line), ߙଵଷ = 1(continuous line), ߙଶଷ = 1 (dot dashed line) at different pressures 

(a) P = 1 atm (b) P = 2.64 atm 

(c) P = 2.73 atm (d) P = 3 atm 
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Table 2: Example 2, NRTL model binary interaction parameters  ܽ௜௝ = ܽ௜௝଴ + ܽ௜௝ଵ 	ܶ , Cal/mol 

component I  component j ܽ௜௝଴  ܽ௜௝ଵ  ௝ܽ௜଴  ௝ܽ௜ଵ  ௜௝ߙ 
methyl ethyl keton cyclohexane 97.3520 0 750.176 0 0.3 
methyl ethyl keton 2-methyl propanol -62.315 6.0050 512.095 -7.741 0.3 
cyclohexane 2-methyl propanol 1067.39 2.125 366.122 -2.73 0.47 

 
At 1 atm (Figure 3a) the RCM of this mixture is characterized by three binary azeotropes of saddle type on 
each binary side of the composition triangle. Three univolatility curves ߙଵ,ଶധധധധധ,  ଶ,ଷധധധധധ start from binaryߙ ଵ,ଷധധധധധ andߙ
azeotropes and intersect at the ternary azeotrope ܣଵଶଷ (unstable node). The increment of the pressure to 2.64	ܽ݉ݐ causes the fusion of the ternary azeotrope with binary azeotrope ܣଶଷ	of saddle type and the resulting 
binary azeotrope ܣଵଶଷ∗ 	is a singular point (Figure 3b). At slightly higher values of the pressure this singular 
azeotrope splits into two, but only one of them, the binary azeotrope ܣଶଷ of unstable node type remains on the 
binary side of the composition triangle. At the same time the binary azeotrope ܣଵଷ, which belongs to the ߙଵ,ଷധധധധധ 
curve, moves to the left towards the apex of the pure 2-methyl propanol. With the further pressure increment, 
at ܲ ≈ ∗ଵଷܣ this azeotrope merges with the pure 2-methyl propanol state (the point ,݉ݐܽ	2.73  in Figure 3c) 
forming a tangential singularity. Physically this means that within the NRTL model, the first two components, 
cyclohexane and 2 methylpropanol, have equal volatilities at infinite dilution at 2.73	ܽ݉ݐ. The described 
singularity is destroyed by the infinitesimal increasing of the pressure, and the bottom end point of the ߙଵ,ଷ = 1 
curve moves to the 2-3 (cyclohexane – 2-methyl propanol) binary side. The resulting univolatility curve ߙଵ,ଷതതതതത 
connects two non-azeotroping compositions on the 2-3 side.  

4. Conclusions 

The topological structure of RCMs and associated univolatility curves is non-trivial even in the case of 
zeotropic ternary mixtures (Reshetov and Kravchenko, 2007). The standard  2D representation in the 
composition space is not always sufficient to describe the true nature of the univolatility curves. A more 
rigorous 3D description based on the concept of the generalized univolatillity curve puts in evidence the 
mechanism of formation of ߙ-curves in the ternary composition space and their transformation under the 
variation of the process conditions. The computational efficiency of the resulting numerical algorithm is 
illustrated by tracing the bifurcation in the univolatility curves topology with pressure variation in two ternary 
azeotropic mixtures, hexafluorobenzene – methyl propionate – benzene and methyl ethyl ketone – 
cyclohexane – 2-methylpropanol. The proposed method allows computing detailed phenomena like the 
formation of tangential azeotrope, bi-ternary azeotropy, saddle-node azeotropes as well as to detect the exact 
bifurcation conditions in the global structure of the univolatility curves of ternary mixtures. 
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