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Measurement and monitoring of air quality in terms of odour nuisance is an important problem. Although the 
source of these nuisances is different (e.g. wastewater treatment plants, municipal landfills), their common 
feature is that they are a complex mixture of odorants with different odour thresholds. An additional problem is 
occurrence of the odour interactions between mixture components. From a practical point of view, it would be 
most valuable to directly link the odour intensity with the results of analytical air monitoring. This would allow 
the on-line odour monitoring using electronic noses, which perform a holistic analysis of the gas mixtures 
composition (like olfactometric methods). The paper presents the possibility of application of fuzzy logic to 
determine the odour intensity and indicate odour interactions in model, five-component gas mixtures (acetone, 
α-pinene, formaldehyde, toluene and triethylamine) using electronic nose prototype. As the results of the 
studies, it was found the electronic nose prototype along with the fuzzy logic pattern recognition system can 
be successfully used for this application. The results obtained using fuzzy logic are consistent with sensory 
analysis results in 80%. 

1. Introduction
Nowadays, more and more frequent problem of air pollution is the occurrence of odour nuisance. Although the 
source of these nuisances is different (e.g. wastewater treatment plants, municipal landfills), their common 
feature is that they are a complex mixture of odorants with different odour thresholds (Fang et al., 2012, 
Gębicki et al., 2014a). Measurement and monitoring of air quality in terms of odour nuisance is an important 
problem. At present, odour concentrations are determined by using the standard method EN 13725:2003 „Air 
Quality - Determination of Odour Concentration by Dynamic Olfactometry”. However, from a practical point of 
view, it would be most valuable to directly link the odour intensity with the results of analytical air monitoring. 
this solution is best suited to devices called electronic noses. These devices perform a holistic analysis of the 
gas mixtures composition, without the separation and identification of its individual components (just like 
olfactometric methods).  
One of the advantages of olfactometry is taking into account the interactions (synergy, neutralization, 
masking) between odour mixture components. Synergism is mutual amplification of two or more stimuli. 
Masking is usually a substitution of an unpleasant odour with another, more pleasant one. Neutralization, also 
called compensation, is typically interpreted as activity of additional component of the odorants mixture, which 
leads to disappearance of odour or to distinct decrease in its intensity. 
Previous studies have shown that these interactions can be also described using the electronic nose 
technique (Szulczyński et al., 2017). In presented studies fuzzy logic was used as the data analysis method. 
Fuzzy logic turned out to be very useful in engineering applications, where classical logic classifying only 
according to the truth/false criterion can not effectively cope with many ambiguities and contradictions. It finds 
many applications, among others in electronic control systems (machines, vehicles and vending machines), 
data mining tasks or in the construction of expert systems. Therefore, the use of fuzzy logic to analyze the 
electronic nose data is  justified and purposeful. 

 

   

DOI: 10.3303/CET1868044 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Please cite this article as: Szulczynski B., Namiesnik J., Gebicki J., 2018, Analysis of odour interactions in model gas mixtures using electronic 
nose and fuzzy logic, Chemical Engineering Transactions, 68, 259-264  DOI: 10.3303/CET1868044 

259



1.1 Odour interaction theoretical models 

Investigations on odour interactions have been carried out for many years, however, they have not led to 
explanation of the mechanisms of these processes so far. Many theoretical models have been developed over 
the years. They describe dependence between the odour intensity of air mixture (containing pollutants) and 
the odour intensity, which would be exemplified if these pollutants were present separately. A multitude of 
these models engulfs Zwaardemaker, Berglund, Patte and Laffort or U-models. However, the investigated 
objects are usually mixtures containing two or three types of odorants. Real odorant mixtures are much more 
complex. Several mathematical models have been developed to predict the quantitative interactions in binary 
mixtures on the basis of perceived odor intensities of the unmixed components. They are presented in the 
Table 1.  

Table 1: Examples of theoretical models (I – odour intensity; k,αAB, αU – empirical constants specific to a given 
pair of substances) 

Model Authors ܫ஺஻ = ටܫ஺ଶ + ஻ଶܫ + ஻ܫ஺ܫ2 cos  ஺஻ߙ
Zwaardemaker ܫ஺஻ = ݇ ∙ ሺܫ஺ + ஺஻ܫ ஻ሻ Berglund, Lindvallܫ = ஺ܫ + ஻ܫ + 2ඥܫ஺ܫ஻ cos  ௎ Patte, Laffortߙ

 
The most universal model was proposed by Zwaardemaker. It depends on vector addition of the odour 
intensities of mixture components. For example, for a ternary mixture, the model form is as follows: ܫ஺஻஼ଶ = ஺ଶܫ + ஻ଶܫ + ஼ଶܫ + 2 ∙ ሺܫ஺ܫ஻ cos ஺஻ߙ + ஼ܫ஻ܫ cos ஻஼ߙ + ஼ܫ஺ܫ cos  ஺஼ሻ (1)ߙ

The interaction coefficient (α) in the Zwaardemaker equation (1) is approximately constant for the given pair of 
components of the mixture. The literature shows that its value is generally in the range of 102-115° (Yan et al., 
2015). Determining interaction coefficients for each pair of compounds is relatively time-consuming. 
Another proposed model is the Patte and Laffort model: ܫ஺஻஼ = ටܫ஺ଶ + ஻ଶܫ +  ஼ଶ (2)ܫ

It adopts Euclidean additivity of particular components of the mixture when present separately (Laffotrt, 
Dravnieks, 1982). 
 

1.2 Electronic noses 

For many years, scientists have been trying to create devices imitating human senses. Already at the 
beginning of the 20th century, equivalents of the human sense of sight and hearing were created. Recently, 
the artificial equivalents of sense of smell and taste have become more and more popular: electronic noses 
and tongues. E-noses have found a special position in analytical chemistry, where they successfully replace 
human senses in many areas of human activity: e.g. environmental monitoring (Capelli et al., 2014, 
Lewkowska et al., 2016) or medical applications (Thaler, Hanson, 2005). Gardner and Bartlett coined the term 
“electronic nose” in 1988. They later defined it as “an instrument which comprises an array of electronic 
chemical sensors with partial specificity and appropriate pattern recognition system, capable of recognizing 
simple or complex odors”(Gardner, Bartlett, 1994). This definition is valid until today. The electronic nose in its 
construction consists of four main systems: sampling system, detection system, data processing system and 
pattern recognition system. The description of the systems is shown in the Figure 1. 
E-noses in their functioning resemble human sense of smell - sensors are an analogue of the olfactory 
receptors in the epithelium of the nose. They convert the chemical information into a analytically useful signal. 
In the next step, this signal is sent to the pattern recognition system, which in the case of a human being is the 
brain, and in the case of an e-nose the appropriate mathematical-statistical algorithm. The most commonly 
used data processing methods are: principal component analysis (PCA), partial least square regression (PLS) 
and artificial neural networks (ANN). The use of artificial neural networks is the most intentional, due to the 
fact that the architecture of the artificial neural network is intended to reflect the action of the human brain 
(Wilson, Baietto, 2009). 
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Figure 1: Electronic nose system description. 

1.3 Fuzzy logic 

Very interesting approach in the field of e-nose data analysis is fuzzy logic. L. Zadech  introduced the basis of 
fuzzy sets theory. Classical logic system is based on the two values, mostly represented by 0 and 1, or true 
and false. The boundary between them is unambiguously defined and unchanging. Fuzzy logic is an extension 
of the classical approach to approach closer to human brain. It introduces additional values between standard 
0 and 1. this action is called blurring. It gives the opportunity to come up with values between this interval (eg, 
almost false, half truth). In the case of non-fuzzy sets, the membership function is rectangular. It is set to 0 (no 
membership in the set) or one (membership in the set). In case of fuzzy sets, other membership functions, 
such as trapezoid, triangular, gaussian, sigmoidal are used. In this work, trapezoid functions were used. 
Fuzzy logic allows a fuzzy description of real systems and is an alternative to describing systems using 
classical binary logic. From this point on, the methods developed on the basis of the theory are of great 
interest. Their development goes hand in hand with the growing number of applications of fuzzy logic in 
practice. It is also used in electronic nose data analysis algorithms. The proposed scheme of using fuzzy logic 
to estimate the odour intensity using e-nose is presented in the Figure 2. 

 

Figure 2: Scheme of using electronic nose combined with  fuzzy logic to estimate the odour intensity  

An example of defined fuzzy set for the e-nose sensor signal values and a set of applied rules based on 
conjunctive operations was described by Szulczyński et al. (2018). 

2. Experimental 
2.1 Reagents and chemicals 

For determining the usefulness of the fuzzy logic algorithms to determine the odour interactions using the 
electronic nose, 32 aqueous five-components solutions of odorous compounds: acetone, α-pinene, 
formaldehyde, toluene and triethylamine were prepared. Concentrations of compounds used in mixtures 
preparation are presented in Table 2. Solutions were prepared to perform sensory and electronic nose 
analysis. The chemicals (Sigma-Aldrich) were of analytical reagent grade.  

Table 2: Concentrations of compounds used in mixtures preparation 

Mixture component Concentration A [ppm v/v] Concentration B [ppm v/v] 
acetone 200 400 
α-pinene 0.1 0.2 
formaldehyde 200 400 
toluene 0.5 1.0 
triethylamine 1.0 2.0 
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Solutions were prepared by mixing five components using all 32 concentration combinations (25). The 
concentrations of substances have been selected in such a way that their odour intensity values are between 
0.4 and 1.4. The odour intensity of prepared samples was determined in three ways: 

- using a sensory panel (sensory analysis), 
- using an electronic nose combined with fuzzy logic, 
- using theoretical model (2). 

For easier interpretation of the results, the prepared samples were coded as shown in the Figure 3. 

 

Figure 3: Coding scheme for sample names 

2.2 Sensory and electronic nose analysis 

Sensory evaluation of odor intensity of prepared mixtures was carried out by 4 persons, selected according to 
the procedure described by Gębicki et al. (2014b). Each member of the panel was responsible for assigning 
the appropriate odour intensity value to a given sample using a 7-step scale described in German Standard 
VDI 3940.Electronic nose analysis were carried out using an e-nose prototype equipped with eight sensors 
(Table 3).  

Table 3: Types of chemical sensors used to build an electronic nose prototype. 

Sensor type Manufacturer / Model Target gases 
Photoionization ION Science / MiniPID VOCs 
Electrochemical Figaro / FECS44-100 ammonia 
Electrochemical Figaro / FECS50-100 hydrogen sulphide 
Metal Oxide Semiconductor Figaro / TGS2600 air contaminants 
Metal Oxide Semiconductor Figaro / TGS2602 VOCs and odorous gases 
Metal Oxide Semiconductor Figaro / TGS2603 air contaminants (triethylamine, mercaptanes, etc.) 
Metal Oxide Semiconductor Figaro / TGS823 organic solvent vapours 
Metal Oxide Semiconductor Figaro / TGS8100 air contaminants (hydrogen, ethanol, etc.) 

 
E-nose experimental setup is presented in Figure 4. Synthetic air flow through a system at a constant flow rate 
of 300 cm3min-1 (controlled by a mass flow controller). The dynamic headspace analysis of prepared samples 
was conducted. By changing the position of the valve V1, the air flowed through the sample to the 
measurement chamber. The electronic nose worked in the stop-flow mode: the sample flow time was 60 
seconds. After closing V2 valve, the gaseous sample was stopped in the sensors chamber for 30 seconds. 
After this time the purified air was returned to the measurement chamber for regeneration of the sensors. 
Signals from the sensors were recorded using an ADC (Simex SIAi-8). Data analysis and other calculations 
were performed using RStudio Desktop (v. 1.0.143) software. 

 

Figure 4: Electronic nose experimental setup 
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3. Results and discussion 
In Figure 5 are presented odour intensity values of tested samples determined using: theoretical model (2), 
sensory analysis and electronic nose combined with fuzzy logic. Values which are statistically different from 
the theoretical are marked with a darker color. A statistical U Manna-Whitney test was utilized to find the 
measurement points, which differed statistically from the theoretical values. 

 

Figure 5: Odour intensities of tested samples determined using (a) theoretical model, (b) sensory panel and 
(c) electronic nose combined with fuzzy logic. 

As a result of the conducted studies, it was found that both: the sensory panel and the electronic nose 
analysis were found odour intensity values statistically different from the theoretically predicted. This fact 
indicates the presence of odour interactions in the tested five-component gas mixtures and the imperfections 
of predicting the odour interactions by used theoretical model (2). Both: sensory and e-nose tests have been 
found to enhance the perceived odour intensity (synergy effect). It should be noted that the odour interactions 
were observed only in the case of samples with a higher concentration of α-pinene and toluene. This may be 
due to the characteristic, pleasant smell of toluene and the pine, resinous scent of α-pinene, which makes the 
smell feel more pleasant. Similar results were also observed in previous studies (Szulczyński et al., 2017). 
The results obtained using the sensory panel indicate the presence of 10 distinctive values, which is about 
31% of tested samples. However, results obtained using an electronic nose combined with fuzzy logic are 
consistent with sensory panel sensations in 80% (8 interactions indicated by e-nose system/10 interactions 
indicated by sensory panel). Correlation between sensory analysis results and electronic nose measured 
values are is presented in Figure 6.  
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Figure 6: Correlation plot of obtained results 

4. Conclusions 
Correlation coefficient for this two groups of results is equal to 0.79, which indicates a very good positive 
correlation between the obtained results. Such a high value of coverage of the results allows to conclude that 
using the electronic nose to determine odour interactions in the tested five-components gas mixtures together 
with fuzzy logic is justified and purposeful. This fact gives possibility to use electronic noses as devices that 
can replace traditional olfactometers in the future, mainly due to the significantly shorter analysis time and 
automated measurement capabilities. 
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