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Aiming at the dynamic vehicle routing problem of dangerous goods under a dynamic environment, a 

mathematical model is established, which is to minimize the risk cost and distribution mileage in the road 

segment and to maximize the freight load factor. Here a cloud-based adaptive ant colony algorithm is 

proposed. There are crossover and mutation operations in ant colony algorithm that may lead to premature 

convergence and loss of late diversity. With the characteristics of dangerous goods logistics, cloud computing 

is introduced to design cloud crossover and mutation operators to operate this algorithm in response to the 

above gap. On this basis, the proposed algorithm can be improved in the context that the simulation schedule 

example will reduce premature probability and enhance the iterative search efficiency more than other 

algorithms. 

1. Introduction 

The Dynamic Vehicle Routing Problem (DVRP) (Dantzig and Ramser, 1959; Ahmed, 2018) was first proposed 

by Psaraftis in 1988. Later scholars made extensive studies on DVRP from two dimensions such as 

information updating and the demand impendency. The DVRP of hazardous goods refers to those occurred in 

remaining transportation schedules on the road segments other than those where the transportation of 

dangerous goods is not allowed in the government's existing transportation network system. Foreign scholars 

have carried out some exploratory works on the modeling of dangerous goods logistics transportation 

networks, etc., for example, Rico-Ramirez proposed a multi-type dangerous goods transportation based on a 

bilevel planning model. The goal of the model optimization is to minimize the risk of transport routes after 

dangerous goods are classified into several types (Rico-Ramirez, 2010). Ning T. built a dangerous goods 

transport network with a bilevel network model. The top model aims to minimize the weighted costs and risks, 

while the underlying model is to minimize the cost of the routes selected for logistics vehicles. On this basis, a 

heuristic algorithm that can improve the algorithm stability is also proposed (NING et al., 2016). Popp I. O 

presented a dangerous goods planning model that allows for risk balance of regional road network, which, 

from the perspective of low-level managers, aims to minimize the risk of road segments, and from the 

perspective of top-level managers, targets at minimizing the total risk of road network (Popp, 2016). Although 

China starts relatively late in the study of the dangerous goods logistics transportation network, there is still a 

definite phased achievement having gained up to now. Mohamed S., on the ground that a dangerous goods 

transport network model in Canada was explored, contemplated the practical operation of dangerous goods in 

China, corrected the key parameters therein, and built a time-constraint-based hazard goods logistics 

transport network model applicable to the specific situation of our country (Mohamed et al., 2017). Hari S. D. 

argued that the important factors for the sake of the safety in the dangerous goods logistics transportation are 

economy, and high weight avoidance. While an improved bilevel planning model for dangerous goods 

transportation is also investigated (Hari, 2017). The upper level of the model aims to minimize the risk of 

accidents to the level as the supervisor desires, and the underlying level minimizes the extra costs as 

expected by the transporter. 

Based on the analysis of existing models, this paper proposes an improved cloud computing ant colony 

algorithm to solve the dynamic logistics schedule problem for dangerous goods. This algorithm firstly designs 
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cloud crossover and mutation operators on the basis of cloud computing theory in an attempt to improve 

crossover and mutation operations in the ant colony algorithm, and further solve the problem of hazardous 

goods logistics. In section 1, the description o f dangerous goods logistics model is supplied; in section 2, the 

theory and process of adaptive ant colony optimization based on cloud computing is described; in order to 

verify the effectiveness of the proposed method, the experimental data is executed to verify the conclusion. 

2. Dangerous Goods Logistics Model 

2.1 Problem description 

Dangerous goods logistics network is a special kind of transportation network system that requires extremely 

high safety and security. It features: (1) the multiplicity of network attributes (NING et al., 2016). Unlike the 

logistics of general goods, the transportation network of dangerous goods includes both attributes of general 

roads and the special attributes of dangerous goods since it must determine the collection of road segments 

that prohibit the access of dangerous goods vehicles. (2) the non-continuity of logistics transportation. The 

development of dangerous goods transportation is susceptible to the supply and demand of upstream and 

downstream firms, so that the dangerous goods logistics supply chain does not always have a transportation 

task. Its discontinuity mainly attributes to the logistics and the mission duration. (3) Traffic complexity. The 

redundant attributes of the dangerous goods transport network contribute to the complexity of its load flow. 

Dangerous goods transportation network must also undertake urban traffic and general goods transportation 

tasks in addition to the integrant tasks such as dangerous goods transportation, which leads to the variety of 

load flows on the dangerous goods transport network (Fattahi and Fallahi, 2010). (4) Traffic disturbance. 

During the dangerous goods logistics process, unforeseen and sudden events may disturb travelling vehicle, 

such as vehicle breakdowns and traffic jams, which exacerbates the normal transportation of dangerous 

goods transport networks. 

2.2 Objective functions 

When the dangerous goods logistics suffers from dynamic disturbances, the distribution vehicle may have 

accomplished part of its mission. As applicable to the vehicle load and the transportation segments, new 

distribution tasks can be added to the existing routes. If the current vehicle cannot cater for the new 

transportation of dangerous goods, new vehicles need to be added. If demands from original customer build 

up and exceeds the maximum vehicle load, the last distribution sites on this subroute is chosen as a new task 

until the distribution limit is satisfied. If this task is regarded as a dangerous goods warehouse, the distribution 

changes from original single route into multiple routes (NING, 2013). Assume that W is the aggregation of 

undistributed tasks in the static phase and the new added distribution tasks in the dynamic phase; M 

represents the number of tasks in a new dangerous goods warehouse, its number is N+1, N+2, ..., N+M, then 

the original warehouse number is changed to N+M+1; L represents the number of newly added vehicles. The 

vehicle that departs from the warehouse in the static phase is located at the customer i, which is numbered 

W+i; the remaining vehicle load in this phase is Q- qik. 

Define the decision variable: 

1,Vehicle k in static phase has dynamic requirement from customers i to j

1,The demand of customer i is satisfied by vehicle k in static phase

0,

ijk

ik

x

y


 



 


0，Ot her s

Ot her s

 

The mathematical model for the disturbed situation at time t is built as follows: 
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Formula (1) represents the objective function, including the unfinished distribution in static phase and the new 

added costs for transports and vehicles in the dynamic phase, and the departure cost of new dispatched 

vehicles in the dynamic phase. 
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Formula (2) represents the constraints for each task that must be distributed. 

686



1

1

, , ;
N M

ijk ik

j

x y i k
 



   (3) 

1

1

, , ;
N M

ijk jk

i

x y j k
 



   (4) 

Formulae (3) and (4) represent that each task can only be distributed by one vehicle. 

( 1) ( 1) Q, , ;N M jk N M jkx j k       (5) 

Formula (5) represents that each vehicle departing from the warehouse is fully loaded. 

1
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Formula (6) represents that the vehicle cannot be unloaded before distributing service to any customer. 

3. Adaptive ant colony algorithm based on cloud computing theory 

3.1 Cloud crossover operator 

In the evolution process of the population, assume that the fitness of the two parent individuals is denoted as 

f1 and f2, the maximum fitness of the parent population is expressed as Fmax, and the minimum fitness as Fmin, 

then the real number pcr is true for: 
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Call pc a cloud crossover operator. In the formula (7), t1, t2 and 𝐹̅ are all constants, and y is a normal random 

number about Fmax and Fmin. As the cloud crossover operator features adaptability and randomness (NING et 

al., 2018), this paper designs a crossover operator to optimize the crossover operation of general ant colony 

algorithm. The crossover operator is always subjected to change with the average adaptation of the parent 

individuals, but also with the normal random number y (Shi et al., 2018). The algorithm of the cloud crossover 

operator is given as follows: 

Step 1: Calculate the average value of the fitness of the father individuals, expressed as Ex=(f1+f2)/2; 

Step 2: Generate a normal random number En’ with En as the expected value and He as the standard 

deviation; 

Where En=m1(Fmax-Fmin), He=n1En, m1 and n1represent control coefficients. 

Step 3: Calculate the cloud crossover operator according to formula (9) 𝑝𝑐 = {𝑡1𝑒
−(𝑓−𝐸𝑥)2

2𝐸𝑛
   ′2 , 𝑓 ≥ 𝐹̅

𝑡2               , 𝑓 < 𝐹̅
. 

The constant 𝐹̅ here represents the average fitness of the parent population, f=max (f1, f2). 

3.2 Cloud mutation operator 

In the process of population evolution, assume that the fitness of a parent individual is expressed as f1, there 

is real number pmt that satisfies: 
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(8) 

Call pm as the cloud mutation operator. In the formula (8), s1, s2 and 𝐹̅ are the constants. The concepts of Fmax, 

Fmin and y represent the same things as (7). 

The stability tendency of the cloud mutation operator depends on three parameters f1, Fmax and Fmin (Seyed et 

al., 2013). 

The key to the cloud-based adaptive ant colony algorithm designed in this paper is to use cloud crossover 

operator, cloud mutation operator and cloud generator (Tamás and Illés, 2017) to improve the algorithm’s 
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convergence speed and search effect. 

Cloud adaptive crossover and mutation probabilities are shown in Figure 1: 

 

 

Figure 1: Cloud adaptive crossover probability pc and mutation probability pm 

3.3 Design of cloud adaptive ant colony algorithm 

Step 1: Perform the distribution scheme and update customer profiles in the initial schedule phase; 

Step 2: If a new customer request appears, determine whether the number of new customer sites reaches the 

upper limit. If this is the case, go to step 3, otherwise, determine whether the next re-schedule time point is 

reached; if so, perform the steps 3, otherwise go to step 1; 

Step 3: a fuzzy demand probability formula is referred to judge whether the customer site should be inserted 

into the current delivery route. If S is greater than the threshold of demands of the next customer site, the point 

is inserted into the current route to generate a new route by the quantum ant colony algorithm, otherwise go to 

step 4; 

Step 4: Add vehicles to complete the distribution tasks for the new customer sites. 

4. Experimental verification 

Simulation experiment adopts Matlab7.0 to verify the feasibility and availability of the improved quantum ant 

colony algorithm (QACA). This paper assumes that there are coordinates (300,270), 14 static distribution 

points, 4 dynamic distribution points set in a dangerous goods warehouse, the distribution area is a square 

450*450 (square kilometers), and the reschedule period is 1 hour. The experiment simulates the dynamic 

distribution of dangerous goods. The locations of different customers are shown in Table 1 and Table 2 below. 

Table 1: Geographical coordinates of 14 static customers 

Customer ID X Y Customer ID X Y 

1 260 115 8 110 150 

2 175 345 9 35 242 

3 220 88 10 363 131 

4 92 305 11 95 205 

5 124 31 12 417 224 

6 108 405 13 371 69 

7 105 380 14 48 153 

Table 2: Geographical coordinates of 14 dynamic customers 

Customer ID X Y 

a 95 205 

b 301 89 

c 75 98 

d 175 175 
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Figure 2: Result of vehicle routing optimization 

Initiate each parameter, 𝛼𝑖 , 𝛽𝑖 takes 1/√2,α=1, β=2, γ=1, ρ=0.9, the iterations are 500 times, the number of ants 

is 40. 

Within the time slice, 4 dynamic task points a, b, c, and d are added. According to the dynamic phase re-

schedule strategy, new task points are inserted into the current distribution route, and an updated distribution 

route may be available, as shown in Figure 3. 

 

 

Figure 3: Distribution route in dynamic phase 

5. Conclusion 

Aiming at different constraints, we establish a dynamic logistics distribution model for dangerous goods with 

multi-targets and propose an ant colony encoding method based on dynamic strategy; the cloud crossover 

and mutation operators are designed to improve crossover and mutation operations of general ant colony 

algorithm. The simulation example is applied to the above algorithm to verify its availability. The results reveal 

that the proposed algorithm features fast convergence and high quality when solving dangerous goods 

schedule problems comparing with other optimization algorithms, t. Considering the disruption event will have 

an impact on user satisfaction and psychological perception, the research about how to make the dynamic 

evolutionary scenario into the model and improve the logistic distribution disruption management model is the 

focus of the next study. 
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