
Again, the center difference is used to calculate𝜕𝜑/𝜕𝑛, for each node (i, j, k), the above formula can be written 

as the following difference equation: 

𝐶𝑡𝜑𝑖，𝑗，𝑘−1 + 𝐶𝑏0𝜑𝑖，𝑗，𝑘+1+𝐶𝑙𝜑𝑖−1，𝑗，𝑘+𝐶𝑟𝜑𝑖+1，𝑗，𝑘+𝐶𝑓𝜑𝑖，𝑗−1，𝑘+𝐶𝑏𝑎𝜑𝑖，𝑗+1，𝑘+𝐶𝑝𝜑𝑖，𝑗，𝑘 =

{
1，(𝑥0，𝑦0，𝑧0) ∈ ∆𝑉𝑖，𝑗，𝑘

0. (𝑥0，𝑦0，𝑧0) ∉ ∆𝑉𝑖，𝑗，𝑘
                                                                                                                              (8) 

Where, 𝐶𝑡, 𝐶𝑏0, 𝐶𝑙 , 𝐶𝑟, 𝐶𝑓, 𝐶𝑏𝑎, 𝐶𝑝 are the connection coefficients around the node (i, j, k) and their own nodes, 

respectively, written in a matrix form and the equation set function (9) is obtained. 

Aφ=S                                                                                                                                                                  (9) 

4. Conjugate gradient method 

From minimized function F(x)=xTAx/2-bTx from (9), let r(0)=b-Ax(0), p(0)=r(0)，then 
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Since A is a capacity matrix, it is a large sparse symmetric positive definite band matrix, as shown below: 
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It can be seen that there are at most 7 non-zero elements in each line of the matrix A. S is the right-end term 

relevant to the supply current, and it only has values on the power supply node ρ, i.e. S=(0,…,0, Sp, 0,…,0)T, 

while Sp=I, so the whole process of the numerical decomposition is to solve the product of matrix A and a column 

vector. A is decomposed into two 2D arrays, i.e. a real array (storing non-zero elements of matrix A) and an 

integer array (storing the index of the positions of the elements in the real array in matrix A), from which the 

product of the matrix A and any column vector is obtained to further acquire the potential φ(x,y,z). 

5. Cholesky decomposition algorithm 

The Cholesky decomposition is  

A≈CCT                                                                                                                                                              (12) 

where C is the lower triangular matrix, obtained from the diagonal matrix. The diagonal element of D is defined 

by: 

2 /jj jj jk kk

k j

d a a d


 
                                                                                                                                          (13) 

Where ajk is the element of matrix A. Obviously, the element of ajk=0 in the summation has no contribution. D 

can be simply obtained. C is determined by the formula 
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1/2C UD                                                                                                                                                         (14) 

Where U is the lower triangular matrix, its diagonal elements ujj=djj, for non-diagonal elements, k<j, then

jk jku a
. It is obvious that the decomposition factor C is sparse, and the off-diagonal element is also a 

symmetric positive definite band matrix. then (9) can be rewritten as: 

 
1

1 1T TC A C C x C b


   
                                                                                                                                        (15) 

If (CCT)-1 is the inverse approximation of the matrix A, C-1A(CT)-1 will be an approximate unit matrix. Kershaw 

expounded the changes in the eigenvalue of the matrix C-1A(CT)-1in practices, most of which approach to 1.0 

and close to the unit matrix, which shows that the Cholesky decomposition of (9) is feasible. Substitute this 

matrix into (10), that is, r0=b-Ax0, p0=(CCT)-1r0, and then 
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The iterative decomposition of (9) is performed quickly by (15), from which the product of matrix A and any 

column vector is also obtained and the potential φ(x,y,z) is solved. 

6. Forward modeling and analysis  

According to the established forward model, we obtain the comparison of the numerical simulation results from 

different reconstruction algorithms on the similar anomaly object at different resistivity. 

6.1 Numerical simulation of different reconstruction algorithms for high and low resistance object in 
uniform medium 

The test model is shown in Fig. 1(a). The dipole electrode sounding observation system is adopted with the 

electrode spacing of 5m, the model thickness of 33.7m, the surrounding rock resistivity of 100, the anomaly 

object ρ1 (red) has a resistivity of 1000 Ω·m, and the electrical property contrast is 10:1. The anomaly object ρ2 

(green) has a resistivity of 10 Ω·m and the electrical property contrast is 1:10. The model simulates high- and 

low-resistance anomaly objects in a uniform space. The forward model and coordinate system are shown in Fig. 

1(a): 

 

Figure 1: (a) Forward modeling of high- and low-resistance in uniform space  

 

Figure 1: (b) Forward simulation imaging based on conjugate gradient reconstruction algorithm  
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Figure 1: (c) Forward simulation imaging based on Cholesky reconstruction algorithm  

As shown in Figs. 1(b) and 1(c), it can be seen that imaging position and range of anomaly objects are subjected 

to change with the forward reconstruction algorithms. The conjugate gradient method has a large imaging range 

on low resistance object. In relation to the position of low resistance model, the imaging range exceeds a lot, 

while the Cholesky has a more accurate imaging position for the low resistance object, close to the size of the 

low resistance model. As compared to the imaging sizes of the high-resistance object, the two reconstruction 

algorithms have little difference. 

6.2 Numerical simulation of different reconstruction algorithms for low-resistance anomaly object in 
layered media  

The experimental model is shown in Fig. 2(a). A dipole electrode sounding observation system is used with the 

electrode spacing of 5m, the model thickness of 28.5m, the upper surrounding rock (green) resistivity of 200 

Ω·m, and the lower surrounding rock (yellow) resistivity of 500 Ω·m. The anomaly object ρ1 (blue) resistivity of 

1 Ω·m. Pass through two layers of media. This model simulates a low resistance anomaly object in the layered 

media space. The forward model and coordinate system are shown in Fig. 2(a): 

 

Figure 2: (a) Forward modeling for low resistance anomalous object in layered media 

 

Figure 2: (b) Forward modeling results of low resistance object based on conjugate gradient reconstruction 

algorithm 

 

Figure 2: (c) Forward modeling results of low resistance object based on Cholesky reconstruction algorithm 

As shown in Figs. 2(b) and 2(c), the imaging range and position of the anomaly objects in the layered medium 

are significantly different. In Fig. 2(b), the anomaly object imaging position is relatively close to the upper 

medium, while for anomaly objects in physical model, the imaging size seems smaller. In Fig. 2(c), the imaging 
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position of anomaly objects is relatively accurate, and the range is closer to that of the low resistance model. 

Comparing these two forward reconstruction algorithms, we can see that Cholesky's imaging position for the 

low-resistance object is relatively precise in the range closer to the size of the low-resistance model. 

In Fig. 2(c), the potential value calculated based on the Cholesky reconstruction algorithm, as prior information, 

is substituted into the model's inversion iteration, namely, the matrix equation is solved for the damped least  

7. Conclusion 

Finite difference method is used to explore the numerical simulation of low-resistance and high-resistance 

anomaly objects in homogeneous and layered media by using different reconstruction algorithms (conjugate 

gradient method and Cholesky). It is found that the Cholesky reconstruction algorithm works well on the numeral 

simulation for sounding low resistance object, while there is a little difference between two algorithms for high 

resistance object, such as air-raid shelters and holes. 

With the increase of the number of dissection meshes, the numerical simulation results based on the two 

reconstruction algorithms are more significantly different. The Cholesky has lower computational speed and 

requires less memory than the conjugate gradient method. The 3D space geoelectric simulation is more complex 

since there are many problems needed to be solved. The algorithm for the calculation program also has a high 

requirement on hardware. The work done hereof is only part of the whole. 
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