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Heavy metal enrichment in the soil affects health of animal, plant, and human. Therefore, the situation of heavy 

metal pollution and distributing rule is worth to research. This article investigated and assessed the status of 

pollution of heavy metals such as Cd, Hg, Pb, Cr, Ni, Ti, and Au in the study area. The singular value 

decomposition and joint sparse model have been successfully applied to map the distribution of elements such 

as Ni, Ti and Au in the research area. And the algorithm was found to be efficient, accurate and consistent with 

Nemerow index data and existing methods. This study lays a theoretical and instrumental foundation for future 

research using remote sensing analysis in a variety of areas, including geochemistry and human health. 

1. Introduction 

Soil, as a carrier of crops, its environmental quality directly affects the safety of agricultural products, and has a 

far-reaching impact on human health. With the rapid economic development, a large number of pollutants have 

entered the soil environment, and heavy metals are one of the important pollutants. There are many heavy metal 

elements, and it mainly refers to elements with significant biological toxicity such as Hg, Cd, Pb, Cr, and 

metalloids. It also includes certain toxic heavy metals such as Zn, Cu, Co, Ni, Sn, etc. Currently, the most 

compelling ones are Hg, Cd, Pb, As, Cr, and others. 

In recent years, a program of cooperation in several political districts has resulted in expanded domestic 

research regarding environmental geochemistry. The research is primarily conducted using conventional 

methods and adopts remote-sensing and other auxiliary methods for a comprehensive analysis of the regions 

under study (Yu et al., 2015; Kemkin and Kemkina, 2015; Lin, 2003). The most relevant previous works related 

to this paper are: Ali, etc. (2015) who designed a geographic environment information and acquisition system 

to study geochemical flows and developed a sedimentation analysis model for the detection of gold, alkali and 

other metals in the north of Pakistan; Cong et al., (2013). who studied the relationship between spectral 

characteristics and distribution of gold deposits in Zhulazhaga region to perform a composition analysis of 

geochemical analysis data; Zhang, etc. who proposed a multipurpose remote sensing geochemical analysis 

method to guide field geochemical research; and Zhao, etc. who analyzed the vegetation in a copper ore region 

in Jiangcheng, Yunnan Province using remote sensing data for the prediction of the mineral field. The literatures 

above study the geochemical environment from different perspectives, all involving remote sensing image 

analysis methods.  

As this technique evolves, it is critical to develop and field test new algorithms which can reveal previously 

imperceptible elements accurately. In this paper, a remote sensing method based on singular value 

decomposition, joint sparse model and field geochemical analysis is used to study both the Chang-Zhu-Tan 

urban agglomeration area and the remote sensing algorithms used. 

2. Materials and methods 

2.1 Study area 

Chang-zhu-tan urban agglomeration is located at 26°3'N - 28°40'N, longitude 110°53′E - 114°15′E. It has about 
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2100 km2 in terms of area, as shown in Figure 1, including three large dense-population areas which totally 

have 300 km2 in terms of area and named as Changsha, Zhuzhou and Xiangtan. The three main parts of Chang-

zhu-tan urban agglomeration are in the same physical geographical system, which belongs to the belt of hill and 

valley in downstream part of Xiangjiang River. Their physiognomy with small relief and abundant hydrographic 

net influences the diffusion of elements. 

 

Figure 1: study area 

2.2 Remote sensing geochemical analysis process 

In geochemistry applications, the key procedures of remote sensing analysis mainly involve collection of 

samples, abnormality verification and abnormality analysis, etc. Apart from the use of general remote sensing 

methods (such as image collection, inlaying, revision, confirmation of training samples, categorization 

surveillance and interpretation), special treatment is also required in the flow chart, which is shown as Figure 2. 

 

Figure 2: Geochemistry remote sensing analysis process 

2.3 Joint sparse reconstruction of remote sensing 

Remote sensing image analysis mainly performs sparse reconstruction operation based on matching tracing 

mode and matching tracking algorithm, and is essentially a type of greedy optimization algorithm, which finds 

the best matching solution through the iterative method. A significant feature in the matching pursuit method is 

that the algorithm is simple and efficient, so it has strong practicability when the accuracy requirement is not too 

high. For the above sparse restructuring, the greedy tracing optimization is used to achieve iterative 

optimization. Equations (1) and (2) describe the optimization model. 
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a = arg min‖a‖0, s. tPx − AaP2
2 < ε                (1) 

a = arg min‖x − Aa‖2   
2 ,  s. t. PaP0 < s                (2) 

The commonly used greedy optimization approaches are OMP algorithm, MP algorithm and their various 

improved variations. To facilitate representation and analysis, it is assumed that all the atoms in dictionary D 

are standard (in which the l2 norm value is 1).  

The pixel element (pixel) of remote-sensing high-spectral figure in adjacent space can be approximately 

demonstrated by constructing sparse linear combination of dictionary atoms. The proportion and weight of these 

atoms are diverse from each other, that means, the same atoms are representing the adjacent pixels, but the 

coefficients of adjacent pixels are different.  

In the combined sparse analytical model of remote sensing images, it is usually assumed that the high-spectral 

adjacent pixels xi and xj can be composed of similar materials. The dictionary representation form of xi is:   

xi = Dai = ai, a, +ai,varavar + L + ai,λK
, aλK

                  (3) 

In formula (1), the size of dictionary D is the matrix of M × N. DK = (λ1, λ2L, λk)is the sparse base of coefficient 

ai. Assume that xi and xj are composed of similar terrain feature elements, then xj can be represented based 

on the linear combination of the same training sample {ak}k∈Ak
and different training coefficients {aj,k}

k∈Ak
:   

xj = Daj = aj,λ1
aλ1

+ aj,Azavar + L + aj,λk
, aλk

                  (4) 

Under this assumption, the process can be extended to the adjacent pixels. Assume that Nε contains T different 

pixels, which are represented based on the same training samples and the linear combination of their 

coefficients. If X = [x1x2L  xT] is a coefficient matrix with a size of M × T, then {xt}t=1,L T ∈ Nε in the formula is 

the adjacent space pixel in the high-spectral remote sensing image. Then X can be represented as:  

X= [x1x2L  xT]=[Da1, Da2, L, DaT]=D[a1, a2, L, aT]=DS                 (5) 

The sparse vector with form of {at}t=1y
∙ T is based on the same training samples and linear combination of their 

coefficients, i.e., it has the same form of Dk. The sparse matrix with form  S ∈ RD×T has only a K-row non-zero 

matrix, i.e., the number of sparse matrix S composed of at is Dk. Assuming  that training dictionary D is known, 

then matrix S can be represented and solved based on the following combined sparse restructuring form:  

Minimize P S Prow,0, Subject to: DS = X                     (6) 

In formula (6), P S Prow,0 is the number of non-zero rows in the restructuring sparse matrix S, which can represent 

the heterogeneity characteristic of S. Then there is a need to solve Ŝ = [â1, â2, L  âT] , while the sparse 

restructuring matrix with a size of M × T only has a few non-zero rows. Based on the analysis of real data, 

formula (6) can be rewritten as (7) and (8) considering error: 

Ŝ = arg min PS Prow,0 , subject to PDS −  XPF ≤ σ                   (7) 

Ŝ = arg min‖DS − X‖F , subject to‖S‖row,0 ≤ 𝐾0                     (8) 

In the above formula, ‖∙‖Fis the norm of Frobenius. The combined sparse representation of the remote sensing 

image is essentially a problem of solving NP-Hard, which can be accomplished by constructing a new greedy 

algorithm. This algorithm is explained in short for it is not the major research focus concerning the paper.   

2.4 Restructuring dictionary representation 

Field and Olshausen were the first to study the construction of training dictionaries from data samples. Their 

method uses a construction dictionary that is over-complete and redundant. Selecting irrelevant natural image 

pixel block and taking it as training set, thus design line-direction partial filter on the basis of dictionary learning.  

There are many additional methods of dictionary learning, such as isolated component learning algorithm, and 

sparse prior learning dictionary construction. Dictionary learning problems can be represented and solved based 

on the sparse constraint form: 

D = arg min‖X − Da‖2
2, S ∙ t {

∀i, Pai P0 ≤ k
∀j, Paj P2 = 1                      (9) 

In formula (9), X = {xi} is the sample figure set, ai  is the column vector of matrix a, sparse representation 

coefficient of image sample block, and standard atom existing in dictionary A. The difference between the above 

coefficient representation models and antecedent models is that the above models further refine the optimization 

objective from D to a, therefore further increasing operation of the optimization process. The problem shown in 

621



formula (9) is non-convex and it can be transformed into a convex optimization problem by making one variable 

constant. Thus, in the actual computation, the universal practice is to assume the value of one variable is fixated, 

then estimate other variables. The commonly used algorithms are MOD (Method of Optimal Directions), general 

PCA (Generalized PCA), singular value decomposition (K-SVD), etc. Here we choose K-SVD algorithm for the 

establishment of the over-complete dictionary. 

2.5 Sparse representation dictionary training 

When dictionary parameters are updated, updating of optimization procedure evolution is pushed forward 

continuously by combining the optimization course with the sparse model representation. Here we use the 

greedy tracing mode to provide the training update of the constructed dictionary.  

K-SVD decomposition algorithm is evolved from the K mean cluster, and it will degrade into the K mean cluster 

analysis algorithm if all the signals are only permitted to be approximated by only one standard atom. The 

following objective optimization problems in the above restructuring procedure of the dictionary need to be 

solved:  

min{PY − DX PF
2} s. t∀i, P XiP0 ≤ T0                   (10) 

In formula (10), y ∈ Rnis the training sample, D ∈ Rn×Kis the dictionary and x ∈ RKis the sparse vector. Y is the 

training set. X is the sparse vector. T0 is the upper limit amount of the non-zero sparse vectors. 

K-SVD algorithm is essentially the updating process of iterative optimization and its dictionary updating is done 

column by column. Sparse vector updating is made along with that of the dictionary. If the dictionary to be 

updated is k-column coefficient dk, assuming X and D are fixed, then: 

PY − DX PF
2 = ‖Y − ∑ djXT

jK
j=1 ‖

F

2
 = ‖Y ∑ djXT

j
− dj

K
j=1 XT

k‖
F

2
= P EkdkxT

kPF
2                                                        (11) 

In formula (11), XT
k is k-th row of X. First decompose DX into two parts: ∑ djXT

j
j≠k + dkXT

k and Ek , which stands 

for the remaining N samples and error matrix of the original sample after removal of atomic k. Then dk and XT
k 

are obtained using SVD algorithm. In solving formula (11) above for the atom dk , updating does not carry out 

sparse constraint representation, then the solving of XT
k has errors. Therefore, the first step is to define set form: 

ω = {i|1 ≤ i ≤ K, xT
k(i) ≠ 0}               (12) 

ω is the index construction set of all the samples {yi} of dk, and define  Ωk to make matrix of N × |ωk| form. And 

the values are 1 at position (ωk(i), i) of the matrix, other positions are 0. XR
k = XR

k Ωk, YR
k=YT

kΩk and ER
k=EkΩk are 

all shrinkage results after zero input is eliminated. Then the problem of formula (12) can be converted into:  

P EkΩk − dkxT
kΩk  PF

2 = P Ek
R − dkxR

kPF
2                                                                                                              (13) 

Formula (13) can be solved using K-SVD decomposition. The K-SVD algorithm can train the dictionary by 

applying the flexible optimization algorithm.  

3. Results and discussion 

3.1 Analysis of abnormal remote sensing image 

Figure 3 shows that the algorithm in this paper can get an accurate abnormal distribution image of Ni and Ti, 

and it can quickly and efficiently map and contrast the abnormal element distribution region with the normal 

distribution region. This greatly reduces surveying and mapping costs. Remote sensing image tones correlate 

with concentrations of geochemical pollution elements, so it can be preliminarily concluded that the above 

abnormalities are caused by human factors. The image tone within the interpretation borderline in figure 3(a) is 

basically uniform, while in the geochemically abnormal element images as shown in figure 3(b) and (c) the tones 

vary dramatically, with red areas having abnormally high element content and blue areas having abnormally low 

element content. Our analysis found out about 20 elements having higher content, such as Ni, Cu, Co, Cr, MgO, 

etc., and about 10 elements having lower content, such as Ba, Ti, Rb, etc. The variations in concentrations of 

these elements are highly consistent.  

Figure 4 shows the remote sensing analysis image of Au, As and Sb distributions in the Changsha area in 

Chang-Zhu-Tan urban agglomeration as an example, by comparing (a) and (b) in Figure 4, it can be seen that 

the algorithm can also identify abnormalities in Au, As, and Sb accurately. Abnormality amounts in Figure 4(a) 

are indicated by contour lines, while in the remote sensing image analysis in Figure 4(b), the element 

concentration is shown by the denseness of red mark points. The result is highly consistent with the distribution 

results of measured contour lines in Figure 4 (a). 
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Figure 3: Remote sensing geochemical abnormality         Figure 4: Remote sensing geochemical abnormality  

somewhere in Zhuzhou                                                     somewhere in Changsha 

3.2 Nemerow index 

In order to validate the model, basic pollution conditions of the Chang-Zhu-Tan region were determined using 

the Nemerow index for urban pollution.     

𝐼𝑖𝑗 = √[(1/n ∑ pij)
2

+ Pijmax
2 ] 2⁄                                                                                                                    (14) 

In formula (14), Iij is the Nemerow index, which is mainly used to evaluate the combined environment pollution 

index.Pij is the standard pollution index which is equal to the measured single element value divided by the 

standard evaluation value. Pijmax is the maximum value of Nemerow index in the pollution elements. n is the 

element quantity of pollution media.  

Here we use the Nemerow evaluation index to analyze the medium based on national standards. The grading 

strategy, according to the Guide for Eco Region Geochemical Analysis, is shown in Table 1, while Table 2 shows 

the results of Nemerow overall evaluation in the Chang-Zhu-Tan region.  

Table 2 shows that pollution level in Changsha is lower than Xiangtan and Zhuzhou, and the number of severe 

pollution samples in the two cities accounts for more than 70% of the total samples. In Zhuzhou, the number of 

severe pollution samples accounts for nearly 50% of the total samples. The marshaling sequence of the general 

pollution in the three cities in terms of severity is: Zhuzhou> Xiangtan> Changsha. 

Table 1: Grading of Nemerow evaluation 

<1.0 1.0~2.0 2.0~3.0 3.0~6.0 >6.0 

Clear area Mild pollution Moderate pollution Heavy pollution Severe pollution 

Table 2: Results of Nemerow overall evaluation in Chang-Zhu-Tan region 

City Changsha Xiangtan Zhuzhou 

Environmental quality Sample Proportion Sample Proportion Sample Proportion 

Clear area 0 0.0 0 0.0 0 0.0 

Mild pollution 25 8.5 10 5.6 10 5.5 

Moderate pollution 123 41.7 38 21.2 41 22.7 

Heavy pollution 94 31.8 67 37.4 41 22.7 

Severe pollution 53 17.9 64 35.8 89 49.2 

3.3 Comprehensive pollution distribution of Chang-Zhu-Tan urban agglomeration 

To confirm the validity of the algorithm used in this study, the distribution contrast results are shown in Figure 5 

along with the results of a contrasting algorithm developed by Liu Jiying et al. The analysis results shown in 

Figure 5(a) and 5(b) indicate similar color/pollution concentration distributions calculated by the two algorithms. 

Both algorithms calculate the same general pollution severity marshaling sequence for the three cities as 

Zhuzhou>Xiangtan>Changsha, which is consistent with the Nemerow results provided in section 5.2. However, 

the algorithm used in this paper appears to have better accuracy in terms of resolution of detail and contrast 

between adjacent areas with different pollution levels. The convergence curves of the objective functions in 
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Figure 6 show that the algorithm in this paper offers a performance advantage over that of Liu Jiying in terms of 

convergence speed and convergence accuracy. 

        

Figure 5: Analytic result of remote sensing image            Figure 6: convergence curve (Liu et al., 2010) 

of Chang-Zhu-Tan urban agglomeration 

4. Conclusion 

This paper provides a practical, accurate remote sensing algorithm, which is an improvement on previous work 

in the field of geochemical environmental remote sensing. The algorithm uses singular value decomposition and 

joint sparse modeling techniques. A test of the algorithm found that it provides a map of the abnormal 

geochemical pollutants in the Chang-Zhu-Tan urban agglomeration area that is consistent with other remote 

sensing algorithms as well as Nemerow index data. This study lays a theoretical and instrumental foundation 

for future research using remote sensing analysis in a variety of areas, including geochemistry and human 

health.   
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