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This paper uses remote sensing technology to estimate the content of soil organic matter. It samples the soil, 

test its organic matter content, and analyzes the correlation between the reflectance of bands of various 

wavelengths and the content of organic matter in the soil with modern remote sensing technology. It figures 

out changes of soil organic matter content in different forms, and on which basis, determine the sensitive band 

of organic matter and construct an estimation model for the estimation of soil organic matter content at multi 

bands and single band. It finds that there is a close relationship between soil organic matter content and each 

band, and the estimation model is sound in stability and accurate measurement. As the application of remote 

sensing technology can improve the accuracy of the estimation of soil organic matter content, it is worth 

promotion and application. 

1. Introduction 

Organic matter is an important part of soil, and it is also one of the key indicators to the soil fertility level and 

soil’s reflectance spectrum. Although the content of organic matter accounts for 10% or less of the total 

content in soil, its value is undeniable. Organic matter is essential to the production of agriculture, the 

protection of soil environment and the growth of plants. It is a key factor in ensuring the quality of soil and the 

healthy growth of plants. Therefore, when estimating the content of organic matter in soil, we must ensure the 

efficiency and accuracy of such estimation. Only in this way can we increase the economic benefits of 

agriculture, farmers and provide an important reference for the promotion of sustainable agriculture. 

Traditional soil organic matter content estimation method is high in cost and low in efficiency. In the actual 

application, the accuracy of the estimated data is often affected by the geographical location. With the 

development of agricultural technology, the traditional estimation method can no longer meet the requirements 

of precision agriculture, hence the emergence of remote sensing technology. Thanks to its advantages in the 

time segments of data acquisition and rich information contained in remote sensing images, remote sensing 

technology is widely used in soil composition, estimation, and inspection. Statistics show that the spectral 

characteristics of organic matter are mainly reflected in its ability to absorb visible light, which also indicates 

that the content of organic matter in soil is related to the reflectance and near-infrared wavelengths in visible 

light. Therefore, the reflected spectrum of soil can be fully used to reflect the content of organic matter. 

2. Literature review 

Soil surface organic matter content is an important soil property of soil mapping, interpretation of soil 

properties and agricultural fertilization. How to obtain the content of soil organic matter directly with remote 

sensing image becomes a hot topic in soil research. According to the theory of electromagnetic waves of 

matter, any substance has a strict physical mechanism for the generation of its spectrum. As its inherent 

properties reflect, absorb, project, and radiate electromagnetic waves, soil surface organic matter content 

serves as the basis for remote sensing interpretation and analysis of surface targets. Castaldi et al. (2016) 

pointed out that the diversity of soil constituents and the unique spectral characteristics of each component in 

the soil make the spectra of various soils have their own characteristics. A study of the relationship between 

soil constituents (such as moisture, organic matter, iron oxides, clays, etc.) and soil reflectivity measured 
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under laboratory conditions shows that: the spectral characteristics of soil have a clear relationship with the 

physical and chemical properties of the soil and can reflect the properties of soil to some extent with the soil 

spectrum. Grinand et al. (2017) studied the land in the Palouse area of eastern Washington State and used 

TM-band ratios to judge the exposure of ancient soils due to erosion in the study area. The authors analyzed 

the benefit of using the ratio of the wavebands to suppress the effects of different brightness values and 

atmospheric reflections caused by the slopes. In the study, organic carbon mapping was performed on 

summer fallow with the 1/4, 3/4, and 5/4 band ratios of TM data. In the study area, the ratio of 3/4, 5/4 and 5/3 

bands were used to determine the free iron/carbon content to estimate the erosion status of paleosols, so as 

to determine whether aviatic remote sensing images of bare soil can be used to estimate soil organic carbon 

content. Jin et al. (2016) selected 28 sampling sites in the experimental field in 115ha in Crisp County, 

Georgia, southern United States, the statistical relationship between the surface soil organic carbon content 

and the aerial image red, green, and blue band image brightness values was analyzed, and a logarithmic 

equation was established to predict the surface organic carbon content. Nawar et al. (2016) used the historical 

hierarchical foreground and background analysis (HFBA) method to identify soil properties in two valleys in the 

Santa Monica Mountains, California. The idea of the method is to extract spectral information from different 

grades of soil chemical composition differences and obtain a series of training vectors in sequence with HFBA 

methods. These vector values are used in AVIRIS images to determine organic matter and iron content. This 

method gradually narrows the range of differences in soil characteristics and finds some of the characteristics 

of small absorption spectra that are directly related to soil properties. This method can be used for soil 

classification in laboratory and AVIRIS images. The results show that the classification results have a good 

prediction effect. Vegetation and relatively steep topography in the study area influence the judgment of soil 

properties. Sadeghi et al. (2015) used digital photographic systems to photograph bare soil in two regions of 

the Midwestern United States. The purpose of this study is to determine that soil lines containing image 

brightness values in the red and near-infrared bands can be used to map organic matter in topsoil and provide 

guidance for soil sampling. The author firstly brings the brightness values of all pixels in the study area into the 

formula: NIR=αR+β to calculate the brightness values of the minimum points of the red and near infrared 

bands in the soil line; then calculates the Euclidean distance between the brightness value of each pixel and 

the minimum point of the soil line; finally, the relationship between Euclidean distance along the soil pixel and 

the content of organic matter in surface soil is obtained. Schuur et al. (2015) improved the method of 

determining soil line parameters with the extracted features of artificial extracted bare soil pixels, an automatic 

soil line identification procedure is developed from bare soil remote sensing images to obtain soil line 

parameters. The key to the automatic discriminator is the user-defined band width and the size of the original 

subset used for the iterator. Comparing the two extraction methods, the automatic extraction method is 

considered simpler and easier. Sharma et al. first conducted a spectral test on the collected soil in the 

laboratory and analyzed the shape of the reflectance spectrum determined by the soil organic matter content 

in the range of 0.35 μm to 1.4 μm. Therefore, the author determined the shape of the continuous spectral 

curve of the soil by treating the coefficient of the polynomial of degree 3 as a parameter. This method for 

predicting organic matter content in TM or ETM images requires some modification of the parameters and 

calculate the spectral reflectance values at 1.049 μm, 1.258 μm, and 1.467 μm to calculate the polynomial 

coefficients. Were et al. (2015) analyzed the relationship between the compositional content (all-iron, organic 

matter, titania, alumina, and silica) taken from three important soil types in central Brazil and the reflectance 

values of the soil in AVIRIS images. Since the study collected black-red tropical soils rich in opaque minerals 

(such as iron oxide and titanium oxide), these opaque minerals reduced the soil reflectivity and masked the 

absorption band characteristics produced by other components: the difference in soil organic matter content in 

the visible light range produces only a small change in the spectrum, so the correlation between reflectivity 

and organic matter content is poor. 

In summary, the above studies are mainly on the estimation of soil organic content, but also the application of 

remote sensing data in the content of soil, but the study is relatively simple. Therefore, based on the above 

research status, the application of remote sensing in soil organic matter content estimation is mainly studied. 

Remote sensing and soil science are analyzed, remote sensing data are collected and analyzed, and an 

inversion model of soil properties and specimen collection are established. The results show that the 

prediction model established with remote sensing technology can more accurately determine the soil organic 

matter content. 

3. Method of the research 

Based on the hyperspectral technique and the main properties of the soil, the spectra of wheat field and soil 

organic matter are obtained to (1) analyze, with winter wheat tests for two consecutive year, the response 

relationship between organic matter and spectrum in the wheat field, evaluate the feasibility of using near-

470



infrared spectroscopy to monitor soil nutrients in wheat field soils; (2) systematically and comprehensively 

study the effect of conventional spectrum, conversion spectrum and calibration treatment on the accuracy of 

soil organic matter monitoring in wheat fields, comprehensive assess the optimal pretreatment plan of spectral 

data to lay a foundation for the accurate and comprehensive mining and extraction of spectral feature 

information; (3) fully and systematically extract the spectral characteristics of the organic matter of the oil of 

wheat field based on the spectral information of the organic matter extracted with continuous projection 

algorithm; (4) use the modeling in multiple linear regression to construct a spectrum monitoring model of 

wheat field soil organic matter and the spectral bands at full scale to construct a spectrum monitoring model of 

wheat field soil. In addition, use continuous projection algorithm to extract and mine the hyperspectral 

information of the soil in the wheat field, and multivariate linear regression to construct the hyperspectral 

monitoring model. Compare the modeling effects of the two models. Table 1 shows the definition of 

hyperspectral remote sensing. 

Table1: Definition of hyperspectral remote sensing 

Spectral resolution Band number (1) △y/y VNIR MIR IRT 

multispectral 5-10 0.1 50-100 100-200 1000-2000 

hyperspectral 100-200 0.01 5-20 10-50 100-500 

hyperspectral - 0.001 0.1-5 0.2-10 20-100 

4. Research results and discussion 

4.1 Remote sensing technology and soil science 

Spectral reflectance as one of the basic properties of soil will change with soil’s physical and chemical 

properties. The parent material of the soil, its organic matter content, moisture, and surface roughness will all 

affect the spectral reflectance of the soil. They form the physical basis of soil remote sensing technology, and 

provide a new way for excavating soil properties and a new indicator for the quantitative inversion of soil 

properties. The rise of remote sensing technology was first to meet the needs of soil science, one of the major 

service object for modern remote sensing technology. As remote sensing data present geographic information 

within a region, it enables the monitoring and comparison of different landscape elements in a wide area, and 

record them as basis for changes. Since these elements can reflect the distribution and characteristics of 

different soils either individually or in combination, traditional remote sensing data have greatly supplemented 

soil science. With the continuous deepening of the research on soil remote sensing and the gradual upgrade 

of sensors, especially with the advent of hyperspectral remote sensing, soil remote sensing has ushered in the 

research on quantitative detection of soil material components. The analysis of soil spectrum will facilitate the 

detection of surface or shallow surface soil properties with hyperspectral remote sensing data, as well as the 

construction of various types of analytical models based on field measurements. 

4.2 Remote sensing data acquisition 

The study adopts Hyperion L1R data. The imaging time was 02:17 UTC on May 22, 2012, and the image was 

located between 25°38'44.05〃N and 26°3924.43^N, 117°20'22.09"E and 117°38'58.85irE. Please refer to 

Figure 1 for the image. 

 

Figure 1: Map of Hyperion data 

Pretreatment of remote sensing images refers to various technical processes that need to be performed on 

the images or data acquired by remote sensing, so that they are more suitable for application [94]. It can make 

the image more clear, highlight target features against the background, and facilitate information extraction in 

the computer. It can restore the original image, enhance the processing of the image, and perform automatic 

identification and information extraction. The problem waveband rejection, the reserved bands and their 

wavelength in the whole process are shown in Table 2. 
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Table 2: Problem bands removal 

Excluded band Retention periods. 

Hyperion's original 

band. 

Wavelength range 

(nm) 

Hyperion's original 

band. 

Wave length fan enclosure 

(nm) 

1 month 7 days 355.59*426.82 8-87 426.82-884.7 

58-78 892.28-993.17 79-120 996.63-1346.25 

121-130 1356.35-1447.14 131-165 1457.23-1800.29 

166-180 1810.38-1951.57 181-223 1961.66-2385.4 

224-242 2395.5-2577.68   

Total: 72 bands.                                Total: 170 bands. 

4.3 Construction of soil property inversion model 

The paper uses L1R image data of Hyperion. It screens the type of land cover in remote sensing images of 

soil survey samples, and brings exposed soil and vegetation cover screened to the construction of a soil 

property inversion model. Extract the spectral information of the pixel where the sample is located and process 

the spectrum. Use unary linear regression analysis and stepwise regression analysis to establish an 

estimation model of soil property and content based on full wave bands and significant bands. 

4.4 Sample collection 

The climate, hydrothermal conditions of the sample collection area good and conducive to plant growth will 

have an uncertain impact on the retrieval of soil properties using remote sensing images. The paper uses 

support vector machine to classify remote sensing images, where the separation degree of vegetation and soil 

is 1.96, of residential area and soil, 1.99, and of vegetation and residential area, 2 (sample separation 

parameter is between 0 and 2, and is fine when greater than 1.9). Cross extract remote sensing image 

classification results and fuzzy clustering results, and conduct superposition extraction when the effects of 

clouds, shadows, water bodies, residential areas, and more complex features on the images removed. Select 

soil survey samples in the exposed soil pixels and vegetation pixels, 103 and 525 respectively. Randomly 

choose 80 and 23 from the former as modeling samples and verification samples respectively, and 485 and 40 

from the latter as modeling samples and verification samples respectively. Figure 2 shows Hyperion 

hyperspectral spectral curves of exposed soil pixels and Figure 3 shows that of vegetation pixels. 

 

Figure 2: Exposed soil coverage sample spectrum original reflectance 

 

Figure 3: Vegetation coverage Sample spectrum original reflectance 

We can see from Figure 2 that the reflectance of 400-2400 nm is low, and increases first and then decreases 

at 700-1300 nm. In Figure 3, the reflectance at 400-700 nm is not more than 0.1, and clearly peaks at 500-600 

nm in the strong reflection peak area of chlorophyll. The reflectance shows a sharp upward trend at 700-1300 

472



nm, and nearly linear at 700-750 nm, with slope related to the content of chlorophyll (a+b) per plant leaf area. 

1470 nm and 2000 nm are bands of strong absorption of water and C02, hence the trough. Table 2-2 shows 

the soil property and content information of modeled exposed soil and vegetation pixel samples. 

Table 3: Information of nutrient content by soil samples 

Like 

yuan 

type 

Sample 

points (1) 

The soil 

properties 

The 

minimum 

value 

The 

maximum 

The 

average 

The 

standard 

deviation 

Variation 

coefficient % 

soil 80 

Alkaline 

hydrolysis 

nitrogen (mg/kg) 

77 31.5 165.96 46.25 27.87 

Organic matter 

(g/kg) 
12.4 59.8 35.73 12.3 34.42 

Effective 

phosphorus 

(mg/kg) 

1 212.7 42.14 40.79 96.80 

Rapidly-available 

potassium 

(mg/kg) 

19 424 100.03 68.42 68.40 

Table 4: Information of nutrient content by soil samples (continued) 

Like yuan 

type 

Sample 

points 

(1) 

The soil 

properties 

The 

minimum 

value 

The 

maximum 

The 

average 

The 

standard 

deviation 

Variation 

coefficient 

% 

vegetation 485 

Alkaline 

hydrolysis 

nitrogen 

(mg/kg) 

30 499 149.83 43.98 29.35 

Organic matter 

(g/kg) 
9.6 64.3 30.66 9.95 32.45 

Effective 

phosphorus 

(mg/kg) 

0.1 331.5 41.17 46.23 112.29 

Rapidly-

available 

potassium 

(mg/kg) 

13 91.9 92.84 86.78 93.47 

 

It can be seen that in the soil pixels and the vegetation pixels, the differences in the soil properties of the soil 

samples are not obvious, with coefficient of variation highest in available phosphorus and lowest in alkaline 

dissolved nitrogen. It indicates that there is a large degree of dispersion between available phosphorus 

samples and a small degree of seperation between alkaline dissolved nitrogen samples. Among them, when 

the coefficient of variation of available phosphorus content in vegetation pixels is more than 100%, it is a 

strong variability. Figure 4 and Figure 5 are the first derivative curves of the reflectance of the exposed soil 

pixel samples and the vegetation pixel samples respectively. 

 

Figure 4: First order derivative reflectance of exposed soil coverage samples 
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Figure 5: First order derivative reflectance of vegetation coverage samples 

5. Conclusion 

This paper introduces remote sensing technology in the estimation of soil organic matter content, builds an 

effective estimation model, and reaches the following conclusions: (1) Given the high content of organic matter 

in the soil, and with its increase, the color of the soil gets from light to dark, the soil spectrum reflectivity 

reduces, therefore, the prediction model established with remote sensing technology is more accurate. (2) The 

high probability of soil phosphorus being fixed by soil minerals is manifested in the soil mineral composition 

image band. Therefore, the inversion model constructed with modern remote sensing technology can predict 

the results both timely and accurately. (3) Considering the geographical conditions of strong reflection, it is 

appropriate to construct a prediction model of available phosphorus based on the vegetation pixels, which also 

shows that there is a very close relationship between the available phosphorus content and its spectral 

response.  
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