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A new mixed discrete particle swarm optimization (PSO) algorithm, i.e. DCH-PSO, was presented to solve 

mixed integer nonlinear programming (MINLP) problems. The main contribution of DCH-PSO is to produce 

integer speed for discrete variable by randomly choosing it from an integer speed range, which is determined 

by analysing the velocity updating formula of original PSO, and the influence of historical velocity to the 

current one was implemented in a probabilistic way. At last, DCH-PSO was applied to synthesize mass 

exchange network (MEN) involving incompatible multicomponent. The design of orthogonal experiments was 

applied to study the effect of algorithm’s tuning parameters, and the results show that DCH-PSO is efficient for 

solving MEN synthesis problems. 

1. Introduction 

Energy-saving and emission reduction are the prerequisites for sustainable development of chemical industry, 

so process integration has attracted a great deal of attention in the past decade (Alcamis et al., 2015). Mass 

exchange network (MEN) synthesis (El-Halwagi and Manousiouthakis, 1990), which can reduce harmful 

emissions in a cost-saving way, is an important technology of process integration. To rigorously synthesize 

MEN involving incompatible multicomponent, the numbers of columns’ trays shall be taken as decision 

variables and a mixed integer nonlinear programming (MINLP) problem (Chang et al., 2015) with strong non-

linearity and non-convexity has to be solved (Liu, 2013).  

There are several types of deterministic algorithm for solving MINLP problems, e.g. branch and bound, outer 

approximation and extended cutting plane, et al (Grossmann and Trespalacios, 2014). The deterministic 

algorithms can find solutions for convex MINLP problems efficiently and exactly, but it’s usually difficult or 

even impossible for them to solve non-convex ones (Burer and Letchford, 2012). So, evolutionary algorithm 

which is not limited to the problem’s continuity or convexity and can find a near-optimal solution quickly is 

attractive in the research field of process synthesis.  

As one of the simplest evolutionary algorithms, particle swarm optimization (PSO) algorithm (Kennedy and 

Eberhart, 1995) can also be applied to solve the MINLP problems (Khare and Rangnekar, 2013). For the 

existed mixed discrete versions of PSO, there are two ways to handle discrete variables, i.e. binary-coding 

(Shokrian et al, 2014) and rounding (Pal et al., 2011). For the binary-coding method, discrete variables are 

coded with 0-1 string, which will increase the dimension of solution and lead to early convergence, especially 

for large integer variable, e.g. numbers of columns’ trays in MEN synthesis problem. For the rounding method, 

the discrete variable is taken as a continuous variable when updating the solution and then rounded to integer, 

which will increase the swarm’s redundancy and decrease the algorithm’s exploration ability, and a random 

rounding method was proposed to reduce the redundancy of swarm (He and Chen, 2008).  

To overcome the disadvantages of discrete variable handling methods mentioned above, the theory base of 

velocity updating equation, i.e. principle of bird flocking proposed by (Eberhart and Kennedy, 1995), was 

analyzed in-depth and extended to discrete space in this work, so a discrete version of velocity updating 

equation was obtained, where the influence of historical speed was implemented in a probabilistic way, then 

PSO in discrete-continuous hybrid space, i.e. DCH-PSO, was presented.  

The aim of this research is to develop a mixed discrete PSO algorithm for solving MINLP problems with high 

nonlinearity, non-convexity and integers as decision variables.  
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In this paper, the following results will be presented: (i) the whole flowchart of DCH-PSO algorithm, (ii) the 

effects of the tuning parameters of DCH-PSO obtained with design of orthogonal experiments, and (iii) the 

result of DCH-PSO applied to a simplified MEN synthesis problem. 

2. Development of DCH-PSO algorithm 

2.1 The Original PSO algorithm 

To solve a D-dimensional optimization problem, the solution is represented by a particle which has two D-

dimensional vectors representing position and velocity, and solutions pool is called the swarm. For a swarm 

with N particles during the tth iteration, the ith particle’s position vector is noted as xi
t=(xt

i,1, xt
 i,2, …, xt

i,j, … , xt
i,D 

) where xt
i, j means the jth decision variable of the ith particle at iteration t, and the velocity vector is noted as vi

t 

= (vt
i, 1, v t

 i, 2, …, vt
i, j, … , vt

i, D ), the optimization process of PSO is iteratively updating the velocity vector and 

moving the particle’s position according to Eq(1) and Eq(2). 

   1
, , 1 1 , , 2 2 ,
t t t t t t t
i j i j i j i j j i jv w v c r P x c r G x                                                                                                     (1) 

  1 +1
, , ,
t t t
i j i j i jx x v                                                                                                                                                                  (2) 

In Eq(1) and Eq(2), Pi
t is the best solution experienced by the ith particle and Gt is the best solution 

experienced by the swarm until the tth iteration, a fitness function is defined according to the optimization 

problem for comparing particle’s performance and determining Pi
t and Gt during search process; wt is the 

inertia weight reflecting the influence of vi
t to vi

t+1; c1 , i.e. cognitive coefficient, and c2, i.e. social coefficient, 

are positive acceleration factors in the range [0, 4] and reflects the impact of Pi
t and Gt to velocity; r1 and r2 are 

uniform random numbers in the range [0, 1]. To control the global exploration ability of the particle, there is a 

maximum velocity, i.e. vj
max, which is set by kv (xj

U - xj
L), where kv is a tuning parameter, xj

U and xj
L is the upper 

and lower bound for the jth decision variable of the optimization problem, |vt
i, j| ≤ vj

max has to be satisfied during 

iteration.  

The inertia weight wt decreases during the search process, as shown in Eq(3), which means wt is large initially 

to emphasize particle’s exploration ability and small in the later period to emphasize particle’s exploitation 

ability. Generally, w0 = 0.7 and w1 = 0.4 according to the literature (Marini and Walczak, 2015).  

1 0
0

t w w
w w

t


                                                                                                                                                            (3) 

Although there are some rules for tuning these parameters (Marini and Walczak, 2015), their values need to 

be set by trial for a given problem. Obviously, with particle’s position xt
i, j being integer initially, they will keep 

as integer if its speed vt+1
i, j kept as integer during the search process, so Eq(1) is analysed in the next section 

to realize this. 

2.2 Analysis of velocity updating equation 

It’s obvious that the updated velocity vector is composed with three vectors according to Eq(1), as shown in 

Figure 1 for a 2-dimensional particle, where a, b and c represent c1r1(xi
t - Pi

t), c2r2(xi
t - Gi

t), and wtvi
t. 

 

Figure 1: The composed vectors of updated velocity vector. 

Since r1 and r2 are uniform random numbers in the range [0, 1], the lower bound lti,j and upper bound ut
i,j for 

the jth element in vector a+b can be obtained with Eq(4) and Eq(5). 

     , 1 , , 2 ,min 0, min 0, t t t t t

i j i j i j j i jl c P x c G x                                                                                                            (4) 

     , 1 , , 2 ,max 0, max 0, t t t t t

i j i j i j j i ju c P x c G x                                                                         (5) 
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Eq(4) and Eq(5) provide the possible minimum and maximum value for the jth element of a+b, so vt+1
i, j must lie 

in the range [lti, j, ut
i, j] and the bounds will be integer with c1, c2, Pt

i, j, Gt
j and xt i, j being integers initially, which is 

easy to be satisfied. For continuous variable, there are infinite choices for element of vector a+b with equal 

probability and the latter two items in right hand side of Eq(1) promises this. While for discrete variable there 

are only limited choices since both lti, j and ut
i, j are limited integers, to randomly select a discrete element of 

vector a+b from the range, the roulette wheel method, which is used in genetic algorithm (GA) for selecting 

individual, can be used and the probability for any integer in the range equals to 1/(ut
i, j - lti, j+1), so it’s obvious 

that the generation of integer element of vector a+b is consistent with continuous ones inherently. 

Now the first item of Eq(1), i.e. wtvt
i, j, must be considered for discrete variable, which is not as easy as the 

latter two items in the equation because wt is not an integer. The essence of wtvt
i, j is the effect of historical 

speed to the current one, which decreases during the search process. An equivalent way to reflect the effect 

of historical speed is proposed here, as shown in Eq(6) and Eq(7). 
1 0

0t w w
w w

p p
p p

t


                                                                                                                                                              (6) 

1,  

0,                

t
t wif rand p

w
else

 
 


                                                                                                                                                    (7) 

In Eq(6), pw
1 > pw

0, so it provides a decreasing probability for wt = 1, which means the effect of historical speed 

to current one decreases during the search process and pw
t is called probability of historical effect here. At 

last, by choosing an integer in the range provided with Eq(4) and Eq(5) and determining wt with Eq(6) and 

Eq(7), a discrete element of a+b+c can be obtained, with x0
i, j and v0

i, j being integers xt
i, j will keep as integers 

during the search process, and the PSO algorithm handling discrete variables in this way is noted as DCH-

PSO here, because the discrete variables move in the discrete space with inherently the same principle as 

continuous ones in the continuous space.  

2.3 Deb’s method of handling constraints 

To solve an optimization problem with constraints as described with Eq(8), the constraints must be handled 

and the optimal solution must satisfy them. 

 

 

 

min   

. .   0, 1,2,...,

       0, 1,2,...,

k

l

f

s t c k K

c l L

 

 

x

x

x

                                                                                                                                             (8) 

Deb (2000) has proposed a simple method to handle constraints for GA, which is noted as Deb’s method here 

and can also be applied to other evolutionary algorithms with the advantage of simplicity and efficiency. The 

principle of Deb’s method is satisfying constraints first, as shown in Eq(9) for problem (8). 
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
 

x x x

x
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                                                                                                      (9) 

In Eq(9), F(x) is the fitness of particle, f(x) is the value of objective function and fmax is the objective function of 

the worst feasible solution in the swarm, so it means that the infeasible particle is worse than any feasible 

particle and the infeasible particle with less constraints violation is better than the infeasible particle with larger 

one.  

2.4 The DCH-PSO algorithm  

Combined the velocity updating and constraints handling method with the particle updating process of original 

PSO, the DCH-PSO steps can be described in the following, where the continuous variables are updated in 

the same way of original PSO. 

Step 1. Set values of algorithm’s tuning parameters: swarm size N, acceleration factors c1 and c2, initial and 

final inertia weights for continuous variable, i.e. w0 and w1, initial and final probability of historical effect, i.e. pw
0 

and pw
1, scale factor kv for maximum velocity. 

Step 2. Initialize particles’ position and velocity. The roulette wheel method is used to produce initial discrete 

position in its feasible bound and uniform random generator is used in the feasible bound for continuous 

variable. The initial discrete velocity for each particle is -1 or 1 according to the random number generated in 

the range [-1, 1], a negative random number corresponds to -1 and vice versa, while the continuous velocity is 

just a uniform random number in [-1, 1]. Set iteration number t=0. 
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Step 3. Calculate each particle’s fitness with Eq(9) and select Pi
t and Gt according to the fitness, update the 

continuous speed of particle with Eq(1), calculate the bounds of discrete speed with Eq(4) and Eq(5), and 

produce discrete velocity with Eqs(4) - (7) as described in Section 2.2, and then update the particle’s position 

according to Eq(2).  

Step 4. Set t = t+1 and update the inertia weights and historical effect probability with Eq(3), Eq(6) and Eq(7). 

Check whether Gt has stagnates, if not, returns to Step 3, else exit the algorithm. 

3. MEN synthesis involving incompatible multicomponent 

3.1 Problem description 

The MEN synthesis problem to be solved in this work is on removing H2S and CO2 from two coke-oven gas 

streams with two optional lean streams: dilute ammonia solution which is a process lean stream with limited 

flow-rate and methanol which is a utility lean stream that can be used without limit, the data for the rich and 

lean streams are listed in Table 1 and 2, where S1 means dilute ammonia solution and S2 means methanol.  

Table 1: Data of rich streams 

No. Gi(kg s-1) ys
H2S ysco2 yt

H2S ytco2 

R1 0.9 0.07 0.06 0.0003 0.005 

R2 0.1 0.051 0.115 0.0001 0.01 

Table 2: Data of lean streams 

No. Li
up(kg·s-1) xs

H2S xsco2 xt
H2S xtco2 Annual cost($·kg-1·y-1) 

S1 2.3 0.0006 0 0.031 0.171 117,360 

S2 ∞ 0.0002 0 
0.003

5 
0.103 176,040 

 

The lean stream price for MEN can be calculated with Ann. cost in Table 2 and the flow-rates of lean streams, 

the equipment cost is calculated with the tray price, which is 4,552 $·y-1 per tray, then the total annual cost 

(TAC) of MEN can be obtained by the sum of lean stream price and tray price. 

The absorption equilibrium functions for H2S and CO2 in the two lean streams are described as Eq(10) to 

Eq(13). 

2 2

11.45H S H Sy x                                                                                                                                                              (10) 

2 2

1
CO CO0.35y x                                                                                                                                                                                                                                         (11) 

2 2

20.26H S H Sy x                                                                                                                                                              (12) 

2 2

2
CO CO0.58y x                                                                                                                                                             (13) 

In the above equations, yH2S and yCO2 are weight concentration of H2S and CO2 in rich stream, either R1 or R2; 

x1
H2S and x1

CO2 are weight concentration of H2S and CO2 in S1, x2
H2S and x2

CO2 are weight concentration of H2S 

and CO2 in S2. 

This problem is taken from (El-Halwagi and Manousiouthakis, 1990) and solved by (Liu, 2013) and other 

researchers, which can be solved with a general super structure method. According to the optimization results 

from literatures (Liu, 2013), the optimal network structure can be simplified as shown in Figure 2. 

 

Figure 2: Simplified structure of mass exchange network 
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Figure 2 means the cheaper lean stream S1 shall be used first to decrease stream price, then the utility lean 

stream S2 is used to exchange with unqualified rich streams. The objective function for synthesis is the TAC of 

the MEN; the discrete decision variables here are number of trays for each mass exchanger, i.e. N1, N2, N3 

and N4, the continuous decision variables for the problem are the flow-rate of S11, S12, S21 and S22; the 

constraints for the problem are described in (Liu, 2013). 

3.2 Synthesis with DCH-PSO 

Obviously, the MEN synthesis problem described above is an MINLP problem, since the mass exchange for 

each exchanger is calculated via Kremser equation (Shenoy and Fraser, 2003) with high non-linearity. To 

solve this problem with DCH-PSO, the values of algorithm’s tuning parameters must be set and the sensitivity 

of optimization result to the tuning parameters shall be studied too. Since there are 7 tuning parameters for 

DCH-PSO, a L18(37) orthogonal experiments table was used here, and the values for each level of the tuning 

parameters are listed in Table 3. 

Table 3: Orthogonal experiments table for DCH-PSO tuning parameters 

Level 
Factors 

N c1 c2 pw
1 w0 w1 kv 

1 40 1 1 0.4 0.6 0.3 0.05 

2 50 2 2 0.5 0.7 0.4 0.1 

3 60 3 3 0.6 0.8 0.5 0.2 

 

In Table 3, only one parameter for historical effect probability, i.e. pw
1, was considered and pw

0 = 0 was set, 

because particles are expected to be exploratory at the beginning.  

To show the performance enhancement of DCH-PSO, a rounding version PSO was applied to the synthesis 

problem too, whose optimal tuning parameters were found according to a L27(36) orthogonal experiments and 

the levels are shown in Table 3. The result of orthogonal experiments is shown in next section. 

4. Results 

Setting tuning parameters according to Table 3 and running DCH-PSO 50 times for solving the simplified MEN 

synthesis problem shown in Figure 2 under each experimental condition, with TAC as performance index, 

Figure 3 was obtained, whose vertical axis is TAC / (105 $·y-1) and horizontal axis is the value for each tuning 

parameter. 

 

Figure 3: The effects of tuning parameters to DCH-PSO’s performance. 

As can be seen from Figure 3, each tuning parameter has an optimal value except N, which shows that the 

algorithm’s performance improved with increased swarm size while other tuning parameters’ value must be 

specified according to the given problem. The decreasing order of tuning parameter’s influence, i.e. extreme 

deviation, is c2, N, c1, pw
1, kv, w0 and w1, so c2 and c1 are the most important parameters except N, which 

shows that the global and local best solution affects the search direction seriously, so the algorithm may fall 

into the local optimal solution easily and the diversity of the swarm must be considered during the search 

process. The history effect probability parameter pw
1 for discrete variable is more important than inertia weight 

parameter w0 and w1, which can be explained as the variation of discrete variables has a greater effect than 

continuous ones. The scale parameter kv is more important than w0 and w1 shows the balance of particle’s 
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exploration and exploitation ability depends on the maximum velocity of the particle more, while the influence 

of inertia weight for continuous variables can not be ignored.  

According to the result of orthogonal experiments, the optimal values of tuning parameters for rounding 

version of PSO are: N = 60, c1 = c2 = 1, w0 = 0.7, w1 = 0.3 and kv = 0.05, after 50 times running of this version 

of PSO, the TAC for the worst and best solution is 1,691,627 $·y-1 and 414,855 $·y-1, with average TAC 

513,610 $·y-1, the data for the best MEN is N1 = 11, N2 = N3 = 4, N4 =3, FS11 = 1.9205 kg·s-1, FS12 = 0.2753 

kg·s-1, FS21 = 0.2239 kg·s-1 and FS22 = 0.1 kg·s-1. For DCH-PSO, the optimal values for tuning parameters are: 

N = 60, c1 = c2 = 2, p1
w =0.5, w0 = 0.8, w1 = 0.4 and kv = 0.1, running DCH-PSO with theses parameters for 50 

times, the TAC for the worst and best solution are 417,720 $·y-1 and 413,160 $·y-1, the average TAC is 

414,530 $·y-1 and the best result of literature is 413,200 $·y-1 (Liu, 2013). The data for best MEN is N1 = 11, N2 

= N3 = N4 = 3, FS11 = 1.8615 kg·s-1, FS12 = 0.3294 kg·s-1, FS21 = 0.2692 kg·s-1 and FS22 = 0.1 kg·s-1. Obvious 

performance enhancement of DCH-PSO compared to rounding version can be seen from the results, 

especially for integer variables, i.e. N2 and N3. 

5. Conclusions 

A new mixed discrete PSO algorithm, i.e. DCH-PSO, is proposed in this research by analysis of velocity 

updating equation of original PSO algorithm, the most important feature of DCH-PSO is that discrete variables 

are updated with the same principle of continuous ones, i.e. bird flocking, and the disadvantages of binary-

coding and rounding versions of mixed discrete PSO are avoided. A simplified MEN involving incompatible 

multicomponent is synthesized by DCH-PSO and the result is a little better than the best literature result, and 

the effects of tuning parameters are also studied with design of orthogonal experiments, which shows that the 

swarm’s diversity may be one of the most important factors for global optimization.  

References 

Alcamis E., Matino I., Colla V., Maddaloni A., Romaniello L., Rosito F., 2015, Process integration solutions for 

water networks in integrated steel making plants, Chemical Engineering Transactions, 45, 37-42. 

Burer S., Letchford A.N., 2012, Non-convex mixed-integer nonlinear programming: a survey, Surveys in 

Operations Research and Management Science, 17, 97-106. 

Chang C., Wang Y., Feng X., Zhang P., 2015, Efficient solution strategy for stage-wise MINLP model of 

interplant heat integration using heat recovery loop, Chemical Engineering Transactions, 45, 67-72. 

Deb K., 2000, An efficient constraint handling method for genetic algorithms, Computer Methods in Applied 

Mechanics and Engineering, 186, 311-338. 

El-Halwagi M.M., Manousiouthakis V., 1990, Simultaneous synthesis of mass exchange and regeneration 

networks, America Institute of Chemical Engineering Journal, 36(8), 1209-1219. 

Grossmann I.E., Trespalacios F., 2014, Review of Mixed-Integer Nonlinear and Generalized Disjunctive 

Programming methods in Process Systems Engineering, Chemie Ingenieur Technik, 86(7), 991-1012. 

He Y., Chen D., 2008, Hybrid particle swarm optimization algorithm for mixed-integer nonlinear programming, 

Journal of Zhejiang University (Engineering Science), 42(5), 747-751. (in Chinese) 

Kennedy J., Eberhart R.C., 1995, Particle swarm optimization, In Proceedings of the 1995 IEEE International 

Conference on Neural Networks, 4, 1942-1948. 

Liu L., 2013, Study on combined mass and heat exchange networks synthesis for multi-component systems, 

Dissertation, Dalian University of Science and Technology. (in Chinese) 

Marini F., Walczak B., 2015, Particle swarm optimization (PSO), A Tutorial, Chemometrics and Intelligent 

Laboratory Systems, 149, 153-165. 

Pal A., Singh S.B., Deep K., 2011, Use of particle swarm optimization algorithm for solving integer and mixed 

integer optimization problems, Journal of Computing Science and Communication Technologies, 4(1), 

663-667. 

Shenoy U. V., Fraser D. M. , 2003, A new formulation of the Kremser equation for sizing mass exchangers, 

Chemical Engineering Science, 58(22), 5121-5124. 

Shokrian M., High K. A., 2014, Application of a multi objective multi-leader particle swarm optimization 

algorithm on NLP and MINLP problems, Computers and Chemical Engineering, 60, 57-75. 

714




