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In fermentation processes, single model based soft sensors cannot guarantee prediction performance owing 

to process characteristics of non-linearity, shifting operating modes, dynamics and uncertainty. In this paper, a 

novel multi-model based modeling method using Gaussian process regression (GPR) and principal 

component analysis (PCA) was proposed to construct a soft sensor for biomass concentration estimation in 

fermentation processes. In the method, principal components (PCs) extracted from original process data are 

firstly used to build GPR based sub-models. Then, to obtain final predictions, posteriori probabilities of the 

GPR based sub-models are used to combine outputs of sub-models. The proposed soft sensor was validated 

on simulation data of a Penicillin fermentation process. For comparisons, several other soft sensor models, 

e.g. GPR, back-propagation neural network (BP-NN) and least square support vector machine (LSSVM), were 

also studied. Results show that the proposed soft sensor has better prediction accuracy and smaller 

confidence intervals. 

1. Introduction 

In fermentation processes, it is difficult to measure some key variables, e.g. biomass concentration, in real 

time by existing online analysis sensors. Therefore, advanced control algorithms always cannot be used for 

process control and optimization. To overcome the problem, soft sensor technology was proposed as a good 

alternative. In the study of Kadlec et al. (2009), many soft sensor methods have been developed for estimation 

and prediction of key variables by using other easy-to-measure process variables. Nowadays, soft sensor 

technology has become a hot research area in the field of process control.  

Two kinds of soft sensors, i.e. model-driven soft sensors and data-driven soft sensors, are widely used in 

bioprocesses. For the difficulty in constructing exact mathematical models of complex biological fermentation 

processes, most of soft sensors are of data-driven models, such as artificial neural network (ANN) (Liu et al., 

2014) and support vector machine (SVM) (Liu et al., 2010). However, these conventional methods cannot give 

accuracy or confidence intervals of predictions, which limits applications of soft sensors in practical processes. 

In other words, conventional soft sensors cannot guarantee reliability of predictions. Recently, Gaussian 

process regression (GPR) was introduced to the field of soft sensors in Mei et al. (2015), which is a relatively 

new kind of machine learning methods based on probabilistic kernel function as an alternative approach to 

artificial neural network approach. This method assumes that the input-output relations are in concordance 

with the prior Gaussian distribution and obtains prediction results by model parameters which are determined 

by the maximum likelihood, while simultaneously the uncertainty of outputs are given. Compared with ANN 

and SVM, GPR has the advantages of integrating priori probability with less parameters and the measurement 

uncertainty of the outputs. According to Williams and Rasmussen (2006), it has a good prospect in soft sensor 

modeling.  

Fermentation processes usually show characteristics of strong nonlinearity and multiphase/multimode. It 

results in poor prediction performance of soft sensors by using single regression models (Yuan et al., 2014). 

Recently, local learning methods have become popular in the machine learning area, e.g. JIT learning 

(Saptoro, 2014), multi-model learning (Yu, 2012), and ensemble learning (Ge and Song, 2014). It was 
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demonstrated that the ensemble local model has better performance than a single regression model. JIT 

learning can cope with process nonlinearity by building local models repeatedly during online operation. 

However, it encounters heavy online computational load and difficulties in defining appropriate similarity 

measures. An alternative local learning method is the multi-model approach, where a model library is defined 

as a collection of local models. Then the output variable can be predicted using the corresponding local model 

relevant to the query state. However, process division information on process patterns and process stages is 

not often available for constructing local models. This problem can be solved using ensemble learning 

methods, in which local models are first trained and then combined to provide an overall output estimate. The 

keys to the success of ensemble learning are diversity and the ensemble strategy, which are still under 

research (Soares et al., 2011). 

In this paper, we proposed a novel multi-model soft sensor method using GPR and PCA based on the basic 

idea of local learning. In the method, multi-scale features on variation, i.e. PCs sorted by the order of primary 

and secondary, are firstly extracted from process data by PCA. Then, GPR is used to construct sub-models in 

the main directions of the variation by using PCs. Finally, posteriori probabilities of the GPR based sub-models 

are used to design weights to combine sub-models. we give comparisons of different soft sensors in a 

simulated Penicillin fermentation process. 

2. Gaussian process regression 

In this section, GPR is briefly introduced (Williams and Rasmussen, 2006). For a regression problem, it can be 

assumed that n-dimensional input vector x and observed target value y are generated according the following 

mechanism, 

   ,  ,x   ny f ε ε N σ 20  (1) 

where ε is the noise, 2σn  is the variance of the nose, and ( )N represents Gaussian distribution. Further, the 

prior distribution of the observed target value y is got, which has been added the noise. 

( , ( , ) )X X  ny N K 20 σ I  (2) 

where  ( , ) ( , )X X x x i jK k is the n n dimensional symmetric and positive definite covariance matrix, 

( , )x xi jk is used to measure the correlation between xi and x j , I is the n n dimensional identity matrix. Then 

we can write the joint distribution of the observed target values and the function values at the test point under 

the prior as: 
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where f is the predicted values at the test point, ( , )X xK is the n 1covariance matrix between training and 

test data set, ( , )x XK is the transposition of ( , )X xK , ( , )x x k is the covariance function evaluated at test 

data x and itself. Then, the predicted distribution of GPR model can be obtained as 

 , , , ( )X x  
f y N f fcov  (4) 

Where 

( , )[ ( , ) ]x X X X
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To establish the GPR model, we must firstly determine the covariance function. In consideration of the 

continuity and the requirement of the covariance function, the radial basis function is a common choice and 

given by 
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where [ , , , , , ]Θ    1 2 0 1
T

nw w w v v are the hyperparameters of the covariance function, and adopting the 

maximum likelihood method to obtain the optimal value. v0 represents an overall measure of the prior 

knowledge, in other words, it controls the typical amplitude of covariation. v1  represents the variation of noise 

and it follows Gaussian distribution. i j  is Kronecker delta. tw can be seen as the weight of the tth dimension. 

GPR is in the framework of Bayesian rule described by Williams and Rasmussen (2006). The marginal 

likelihood function of Bayesian formalism, typically negative log marginal likelihood function, was chosen as an 

optimization objective function of hyperparameters in this study. 

3. Proposed multi-model strategy based soft sensor 

PCA is widely used to extract data features in processes. The basic idea is to determine the primary and 

secondary change directions, i.e. PCs, according to the variance of the data. The main PCs are obtained by 

the order of the primary and secondary, which are independent of each other. In this work, we proposed a 

multi-model based modeling approach using former k PCs. In the method, the ith sub-model is constructed on 

the ith PC and output. That is a multi-scale modeling method because PCs are sorted in descending order. It 

means that the modeling accuracy of the final ensemble model depends on the number of PCs used in 

modeling. More PCs used in modeling means better accuracy of the multi-model based soft sensor. The final 

ensemble model can be written as Eq(8). 
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Where , , ,   iw i k1  is weighting factor, and k refers to the number of sub-models. ( )if x is the estimate of the 

ith sub-model. For normalization Eq(9) should be satisfied： 




n

i

i

w
1

1 (9) 

In this work, we construct iw using variances of estimates because variances can reflect the stability of 

models. The weight of the k sub-model can be designed as 



  
 

 

 

i
i K K

j i j

j j

w
2

2 2 2

1 1

1 1

1 1

 
(10) 

Where ( ) ,  ,     2 cov 1i if i k , f is the predicted values and k represents the number of sub-models. For 

uncorrelated PCs, the variance of the ensemble output can be written as 
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i
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 (11) 

The modelling procedures of the proposed soft sensor are depicted as follows: 

Step 1: Collect and standardize training data and test data. 

Step 2: Use PCA method to obtain PCs of training data. Determine k value, the number of selected main PCs, 

according to 85 % cumulative contribution rate. 

Step 3: Construct local models using GPR to reflect correlation between PCs and output respectively.  

Step 4: Calculate predicted means and posterior probabilities corresponding to every test data with all GPR 

based sub-models. 

Step 5: Calculate the weights by the posterior probabilities with respect to each sub-model using Eq(10) 

Step 6: Combine predictions of local models as the final predictions by Eq(8). 

4. Case study 

This case is based on the simulation software of penicillin fermentation process (Pensim) (Birol et al. 2002) to 

produce data, and to carry out the research work of soft sensor modeling. The simulator contains a fermenter 

where the biological reaction takes place. The detailed description of the process is given in Birol et al. (2002). 

For different demands, the simulator provides several settings including the controller, process duration, 
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sampling rates, etc. In this study, we set the sampling intervals is 1 h and the fermentation period is set to 400 

hours. Then, the Pensim software randomly run 10 batches under normal conditions. 7 batch data are used as 

training data sets, and the remaining 3 batch data are used as test data sets. There are totally 16 measure 

and variables in the simulation plant. The penicillin concentration is difficult to measure online and chosen as 

output variable. 11 variables among them are highly related to it are selected as input variables (Yuan et al., 

2014). 

After PCA on training data, former 5 PCs, the cumulative contribution rate of which exceeds 85 %, are 

selected to construct sub-models. For performance comparison, the GPR based soft sensor, the BPNN based 

soft sensor and the LSSVM based soft sensor were also studied. In the BPNN based soft sensor, the number 

of input-layer nodes is set to 5 and the number of hidden-layer nodes is set to 8. In the LSSVM based soft 

sensor, the optimized regularization parameter is equal to 613.96 and optimal kernel parameter is equal to 

0.21. 

Figure 1, 2 and 3 give predictions of different soft sensors, i.e. the proposed soft sensor, the GPR base soft 

sensor, the BPNN based soft sensor and the LSSVM based soft sensor, on 3 test batches. For the proposed 

soft sensor and the GPR based soft sensor, the predictions are expressed as mean with 2*std (std, standard 

deviation) error bars (dotted lines). The regions between the two dotted lines depict the confidence intervals. 

Compared with the other 3 soft sensors, it can be observed that predictions of the proposed soft sensor follow 

the actual values more closely. Also from Figure 1, 2 and 3, it can be found that the proposed soft sensor has 

smaller confidence intervals compared to the GPR based soft sensor. It reflects the modelling ability of multi-

model approach integrated in the proposed soft sensor.    

For comparison in detail, the root-mean-square error (RMSE) criterion is adopted. Table 1 gives quantitative 

comparisons of different soft sensors in the PFP. It can be observed that the proposed soft sensor 

outperforms other soft sensors because the RMSE values of the former are smaller than those of the others. 

Also from Table 1, it can be found that the average confidence intervals of the proposed soft sensor are 

smaller than those of the GPR based soft sensors. It means that the proposed soft sensor has higher reliability 

(smaller uncertainty) than that of the GPR based soft sensor. 
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Figure 1: Predictions on the first test batch with different soft sensors in the PFP. (a) The BPNN based soft 

sensor; (b) The LSSVM based soft sensor; (c) The GPR based soft sensor; (d) The proposed soft sensor 
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Figure 2: Predictions on second test batch with different soft sensors in the PFP. (a) The BPNN based soft 

sensor; (b) The LSSVM based soft sensor; (c) The GPR based soft sensor; (d) The proposed soft sensor. 
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Figure 3: Predictions on the third test batch with different soft sensors in the PFP. (a) The BPNN based soft 

sensor; (b) The LSSVM based soft sensor; (c) The GPR based soft sensor; (d) The proposed soft sensor. 

Table 1: Comparisons of different soft sensors in the PFP 

Method RMSE Average confidence intervals 

 Batch1 Batch2 Batch3 Batch1 Batch2 Batch3 

BPNN 0.7244 0.5538 0.4472 - - - 

LSSVM 0.6393 0.4370 0.3655 - - - 

GPR 0.7232 0.5947 0.4995 1.5608 1.1880 0.9604 

proposed method 0.4621 0.3050 0.2939 1.0868 1.0592 0.9580 
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5. Conclusions 

Soft sensor modelling is essentially data-driven modelling. Single model based soft sensors and multi-model 

based soft sensor are both common in fermentation processes. Especially, multi-model based models have 

advantages in modelling complex fermentation processes with characteristics of multiphase and multistage. 

However, it is difficult to determine the structures and parameters of a multi-model, e.g. the number and initial 

parameters of sub-models.  In this paper, a novel multi-model soft sensor using GPR and PCA in fermentation 

processes was proposed. In the method, PCA is firstly used to extract features of the data of fermentation 

processes for building sub-model. Then, GPR based sub-models are constructed in the directions of main 

PCs. Finally, probabilistic outputs of sub-models are used to design weights to ensemble sub-models. Unlike 

conventional multi-model modelling approach, data features are used for modelling in the proposed method. 

Validations on process data from a Penicillin fermentation simulation case show that the proposed soft sensor 

outperforms the GPR based soft sensor, the BPNN based soft sensor and the LSSVM based soft sensor and 

has great potential in soft sensor modelling for key variables in fermentation processes. In further study, we 

will prove and improve the proposed method theoretically. 
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