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This paper aims at showing the application of neural network predictive control (NNPC) to counter-current heat 

exchangers (HEs) in series for water savings. The controlled process unit is composed of five counter-current 

shell-and-tube heat exchangers in series in which petroleum, coming from a distillation unit in a refinery is 

cooled.  

Neural network predictive control (NNPC) of the HEs for water savings was studied by simulations. The neural 

network (NN) plant model of the heat exchangers in series was obtained off-line. The two-layer network with 

sigmoid transfer functions in the hidden layer and linear transfer functions in the output layer was trained using 

the Levenberg-Marquardt (LM) algorithm. The neural network predictive control (NNPC) combines the 

advantages of neural-network-based modelling and model-based predictive control (MPC). Neural-network 

modelling is suitable for modelling non-linear processes, processes with asymmetric dynamics and processes 

with uncertainty. MPC is a model-based strategy and usually linear models of controlled processes are used. 

This fact can cause problems when strongly non-linear processes, processes with asymmetric dynamics or 

uncertainty have to be controlled. Using neural-network plant model in MPC is one of the ways to overcome 

these problems. Moreover, MPC can handle boundaries on control inputs and controlled outputs. As the 

calculated control inputs are obtained as a result of an optimisation procedure, MPC can lead to water savings.  

Results obtained using NNPC for the HEs were compared with those by the classical PID control. They confirm 

that using the advanced control strategy leads to water savings. 

1. Introduction 

Shell-and-tube heat exchangers (HEs) belong to the basic thermal equipment which are frequently used in the 

chemical, polymer, rubber and energy industry. 

In (Inchaurregui-Méndez et al., 2016), a new MINLP model for heat exchanger network synthesis considering 

streams with phase change and their geographical allocation based on safety is proposed. The paper (González 

et al., 2006) discusses the online optimization and control of a heat-exchanger network through a two-level 

control structure. The low level is a constrained predictive control model and the high level is a supervisory 

online optimiser. The study (Oravec et al., 2016) investigates using robust model based predictive control 

algorithms for optimal operating of heat exchangers in series from the stability and economic viewpoints. The 

aim of the paper (Vasičkaninová et al., 2016) is to show the benefits of two advanced control strategies in heat 

exchanger control. The designed controllers were verified on a real-time control of a laboratory heat exchanger. 

In the work (Trafczynski et al., 2016), to improve the quality indices of the heat exchanger control under fouling 

conditions, a more advanced method of the optimization of controller tuning is presented. The work (Rohani et 

al., 2016) considers improving the heat recovery of an existing heat exchanger network while minimizing the 

total annualized cost of the retrofit design. In the paper (Yong et al., 2015), the problems in retrofitting a heat 

exchanger network for utility usage reduction are discussed. The paper (Vasičkaninová and Bakošová, 2015a) 

investigates a predictive control algorithm to regulate the output petroleum temperature of the tubular heat 

exchanger. The work (Vasičkaninová and Bakošová, 2015b) presents an advanced control strategy that uses a 

neural network predictive controller and a fuzzy controller in the complex control structure with an auxiliary 

manipulated variable. The goal of the contribution (Barna et al., 2016) was to develop an object oriented model 
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and a prototype file storage format primarily for HEs related tasks. The alternative robust model predictive control 

strategy was implemented to find the optimal control actions taking into account the boundaries on control inputs 

in (Oravec et al., 2015). Advanced control of heat exchangers is able to ensure high energy efficiency and to 

minimize energy losses. NNPC is one of the advanced control strategies that combines the advantages of 

neural-network-based modelling and model-based predictive control. Neural-network modelling is suitable for 

the modelling of non-linear processes, processes with asymmetric dynamics and processes with uncertainty. 

The control inputs calculated in MPC are the result of an optimisation procedure and MPC can handle 

boundaries on control inputs and controlled outputs. As the control inputs are the result of an optimisation 

procedure, MPC can lead to energy savings. The aim of this research is to show that NNPC can be attractive 

for HEs operation because of increasing energy efficiency and water savings that are very important for 

sustainable management the natural resource fresh water, to protect the water environment, and to meet the 

current and future human demand.  

2. Process description 

A heat exchanger (HE) is a device for the heat transfer from one fluid to another. The most common heat 

exchangers in industrial applications are the shell-and-tube heat exchangers. These exchangers consist of a 

shell and a large number of tubes packed in a shell with their axes parallel to that of the shell (Figure 1). 

 

Figure 1: Counter- current flow.  

Consider five identical counter-current shell-and-tube HEs in series (Figure 2). Petroleum flows in the inner 

tubes and cooling water in the shell of each heat exchanger. The tubes of the heat exchangers are made from 

steel. The controlled output is the temperature of the outlet stream of petroleum from the 5th heat exchanger 

and the control input is the volumetric flow rate of the inlet stream of cold water into the 5th heat exchanger. The 

objective is to cool down the outlet temperature of the petroleum to the reference values and to minimize the 

cold water consumption. 

 

Figure 2: Schematic of a counter- current shell-and-tube heat exchangers in series. 

The simplified nonlinear dynamic mathematical model of the HEs can have the form of ten first-order ordinary 

differential equations (Oravec et al., 2016). 
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where the subscripts 1, 2 indicate the cold and the hot stream. The superscript j = 1, …, 5 stands for the 1st, …, 

5th heat exchanger, jj TT 0,11 )0(  , jj
TT

0,22
)0(  are initial conditions. In Eqs(1)–(2), t is the time, T(t) is the time-

varying temperature, n is the number of the HE's tubes, l is the length of the HE, d1in is the inner diameter of the 
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tube, d1out is the outer diameter of the tube, d2in, is the inner diameter of the shell, V is the volume, ρ is the 

density, cp is the specific heat capacity, q is the volumetric flow rate, A is the heat transfer area and U is the 

overall heat transfer coefficient. The steady-state temperatures T1j
s and T2j

s, j = 1, …, 5, were computed for the 

inlet temperature T1in = 293.15 K, T2in = 503.15 K from the steady-state model represented by Eqs(1)–(2) with 

zero derivatives. Parameters of the heat exchangers are presented in Table 1. To demonstrate the robustness 

of the controllers used, two interval parametric uncertainties are considered. The heat-transfer coefficient U 

changes as the flow rate of the cooling medium changes, and the petroleum density ρ2 depends on the 

temperature in the HE (Table 1).  

Table 1: Parameters of heat exchangers 

Variable  Unit Value Variable Unit Value 

n 1 40 q1 m3 s-1 0.0048 

l m 6 q2 m3 s-1 0.0058 

d1in m 0.019 1 kg m-3 980 

d2in m 0.414 cp1 J kg-1 K-1 4,186 

d1out m 0.025 cp2 J kg-1 K-1 2,140 

A m2 16.6 U J s-1 m-2
 K-1 482.17±20 

V1 m3 0.0912 2 kg m-3 810±16.2 

V2 m3 0.7165    

3. Neural network-based model predictive control 

The objective of the model-based predictive control (MPC) is to predict the future behaviour of the process over 

a certain time horizon using the dynamic model and to obtain the control actions minimizing a cost function. At 

each sampling period, only the first control input of the calculated sequence of control inputs is applied to the 

controlled process. At the next sampling time, the procedure is repeated. This is known as the receding horizon 

concept. So, the controller is composed from a plant model and an optimization block. The basic implementation 

of the model-based predictive control (MPC) was mainly for linear systems. Recently, great effort is devoted to 

the development and implementation of nonlinear versions of this algorithm. One of these implementations is 

the use of neural networks for controller design. Neural networks are capable of capturing the system nonlinear 

dynamics and can be used to approximate the process as well as to design the model predictive controller. The 

neural network-based predictive controller (NNMPC) uses a neural network model of a nonlinear plant to predict 

future plant performance (Figure 3). Then the controller calculates the predicted control input that will optimize 

plant performance over a specified future time horizon. This control method is based on the receding horizon 

technique (Soloway and Haley, 1996). The NNMPC structure is composed of four components in addition to the 

plant. These components are two neural networks, one for the plant and the other for the controller, an optimizer 

and a performance function. For a selected time horizon, the controller optimizes the plant output using the 

neural network plant model for calculating controller moves and predicting plant output. The neural network 

controller is trained in order to produce the correct controller moves generated by the optimization algorithm 

(Hunt et al., 1992). 

 

Figure 3: The neural network-based MPC structure. 

The neural network model predicts the plant response over a specified time horizon. The predictions are used 

by a numerical optimization program to determine the control signal that minimizes the following performance 

criterion over the specified horizon:   
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where N1, N2, and Nu define the horizons over which the tracking error and the control increments are evaluated. 

The u' variable is the tentative control signal, r is the reference response, and ym is the network model response. 

The λ value determines the contribution that the sum of the squares of the control increments has on the 

performance index (Beale et al., 2015).  The optimization block determines the values of u′ that minimize J, and 

then the optimal u is input to the plant.  

4. Simulations and results 

4.1 NNPC of the heat exchangers 
The neural network predictive controller uses a neural network model to predict future HEs responses to 

potential control signals. An optimization algorithm then computes the control signals that optimize future plant 

performance. The neural network (NN) plant model of the HEs was obtained off-line. The two-layer network with 

sigmoid transfer functions in the hidden layer and the linear transfer functions in the output layer was trained 

using the Levenberg-Marquardt (LM) algorithm (Figure 4). The LM algorithm is an iterative technique that locates 

the minimum of a function that is expressed as the sum of squares of nonlinear functions. The LM algorithm can 

be thought of as a combination of the steepest descent and the Gauss-Newton method. The training data was 

obtained from the nonlinear model of the HEs.  

Constraints and parameters values used for NNPC design were: the controller horizons N1 = 1, N2 = 5, Nu = 2, 

the weighting parameter λ = 0.05. The number of neurons in the first layer of the plant model network was 6, 

the number of delayed plant inputs was 4, the number of delayed plant outputs was 3, the sampling interval was 

3 s, training samples = 1,500 (number of data points generated for training, validation, and test sets). The 

constraints on control inputs were chosen: the minimum control input q1min = 1.666710-4 m3 s-1, the maximum 

control input q1max = 0.0086 m3 s-1. 

 

Figure 4: Training data for NNPC. 

4.2 PID control of the heat exchangers 
PID controllers are described by the transfer function 
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where kp is the proportional gain, ti the integral time and td the derivative time, were tuned using Cohen-Coon 

and Rivera-Morari methods (Ogunnaike and Ray, 1994). The model was identified from the step response of 

the HEs in the form of the nth order plus time delay transfer function (Mikleš and Fikar, 2007). 
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The transfer function parameters are: the gain K = - 62.6 K s m-3, the time constant τ = 96 s and the time delay 

D = 6 s. The PID controller parameters obtained using the Cohen-Coon formulas are kp =  0.21 K-1 s-1 m3, 

ti = 64 s, td = 9.6 s and those obtained using the Rivera-Morari formulas are kp =  0.1077 K-1 s-1 m3, ti = 274 s, 

td = 12.6 s.  

Simulation results obtained using designed NNPC and two PID controllers in the set-point tracking and in the 

disturbance rejection are shown in Figures 5 – 7 for the nominal system, for the system with maximal changes 

of the uncertain parameters and for the system with minimal changes of the uncertain parameters. The 
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disturbances were represented by changes of the volumetric flow rate of the hot stream by +8.3310-4 m3 s-1 at 

600 s, −1210-4 m3 s-1 at 1800 s, +1510-4 m3 s-1 at 3,000 s.  

 

Figure 5: Comparison of NNPC and PID control for the nominal system. 

 

Figure 6: Comparison of NNPC and PID control for the system with minimal changes of the uncertain 

parameters. 

 

Figure 7: Comparison of NNPC and PID control for the system with maximal changes of the uncertain 

parameters.  

Table 2: Values of IAE and V2 

Controller IAE (–) V2 (m3) 

 

 

PID Cohen-Coon 

minimal 

changes 

51.68 

nominal 

system 

54.06 

maximal 

changes 

43.02 

minimal 

changes 

20.30 

nominal 

system 

17.64 

maximal 

changes 

17.54 

PID Rivera-Morari 43.95 33.63 44.76 17.45 17.07 18.24 

NNPC 22.23 24.57 21.65 16.19 16.24 16.06 

 

The control performance achieved using the NNPC was better in both cases (namely the set-point tracking and 

the disturbance rejection) than the performance achieved by PID control. The control response using the NNPC 

controller was fast and without big overshoots and undershoots in all studied situations. The simulation results 

were compared using the integral quality criterion IAE (integrated absolute error) (Ogunnaike and Ray, 1994), 

see Table 2. The NNPC achieves the best results also in accordance to the IAE. The total volume of cooling 
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water V2 consumed during the control was also followed. The results are compared in Table 2 and it can be 

stated that the lowest water consumption was obtained using the NNPC structure.  

5. Conclusions 

Neural-network-based predictive control of five counter-current heat exchangers in series was studied. The 

simulation results confirm that the advanced control strategies such as neural-network-based predictive control 

can be used for efficient control of heat exchangers in series. The advantage of this approach is that it is not a 

linear-model-based strategy and the neural-network plant model is suitable for modelling the HEs with 

uncertainty and asymmetric dynamics. The other advantage is that the control input constraints are directly 

included into the controller synthesis. Moreover, the simulation results showed that NNPC leads to water savings 

in comparison to the conventional PID control.  

Further research will be focused to the improvement of the neural-network-based predictive control algorithm 

and to the extension of the studied process model to a heat recovery network as the coolant outlet stream of 

the HEs can be used for heating in another process unit.  
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