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This contribution investigates the extent to which dynamic optimization and optimal control can provide reliable 
prediction and insure prevention of runaways under uncertainty. We limit our analysis to batch systems 
because both the issue of model uncertainty and that of hazardous loss of control are widespread within this 
type of processes. The paper shows that, surprisingly, a specific class of deterministic dynamic optimization 
and optimal control algorithms allows us to easily identify and prevent runaways, even when no accurate 
process model is available. The production process of 2-butyl propanoate via acid-catalyzed esterification of 
2-butanol serves as case study to substantiate our claims.    

1. Introduction 

Nowadays, many high value added chemical products (fine chemicals, APIs, etc.) continue to be synthesized 
batch-wise because of economic and technical considerations. Unfortunately, the production of many of these 
products involve highly exothermic chemical reactions, which might potentially trigger thermal runaways. Thus, 
the problem of finding efficient criteria to design and operate batch processes in safe and profitable fashion 
(“to design” means “to select the most suitable recipe” in this context) remains important and relevant to safe 
operation.  
The traditional solution to this problem is to combine safety diagrams, which allow safe and profitable offline 
design, and conventional control systems, which should insure safe and profitable online operation. For the 
sake of clarity, let us briefly introduce the concept of safety map. Safety diagrams are charts showing design 
regions where, under nominal conditions, it is safe to carry out the batch process. The boundaries of such 
regions are often identified by critical values of dimensionless numbers measuring the interplay of heat 
generation and heat removal efficiency. In the past, several authors proposed their own safety diagrams 
(Zaldívar et al., 2003), which usually differ in both range of applicability and characteristics of the employed 
dimensionless numbers. On the other hand, recent research primarily focuses on finding novel methods to 
construct these safety maps, e.g. Copelli et al. (2013) propose to use topology tools while Milewska et al. 
(2005) suggest to rely on computational fluid dynamics. This said, it is important to point out that safety 
diagrams are still the state-of-the-art approach used to design batch processes, as recent contributions 
confirm (Casson et al., 2012). 
This traditional approach to safe design and operation of batch processes is two-stage, i.e. we first take care 
of the design phase offline and then we seek the optimal and safe operating conditions associated with the 
resulting recipe in real-time (a control system handles this latter phase). However, especially for highly 
nonlinear batch processes, it is more effective to choose the recipe and define the optimal operation policy in 
both simultaneous fashion and real-time. This is why Rossi et al. (2015) recently proposed a framework for 
safe, online, simultaneous design and operation of batch processes, which relies on a specific class of 
dynamic optimization (DRTO) and optimal control (NMPC) algorithms. In particular, the NMPC/DRTO method 
used in (Rossi et al., 2015) is BSMBO&C (Rossi et al., 2014a), which is a tested methodology (Rossi et al., 
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2014b) originating from the expertise of Prof. Manenti’s research group in the development and application of 
DRTO/NMPC strategies (Viganò et al., 2010). 
The strategy introduced by (Rossi et al., 2015), named BMBO&RP for the sake of brevity, shows to be reliable 
and effective but implies knowledge of an accurate model of the batch process. This is a challenge in many 
real settings because batch processes often involve multi-phase mixtures, complex chemical reactions, and so 
on. Therefore, this paper studies the extent to which BMBO&RP can still provide reliable prediction and insure 
prevention of runaways under uncertainty. Moreover, it also proposes simple qualitative modifications to 
BMBO&RP, which should allow improving its reliability under uncertainty. In order to accomplish this objective, 
we rely on a meaningful case study, i.e. the production of 2-butyl propanoate via acid-catalyzed esterification 
of 2-butanol. 
The remaining portion of this article will report the principal features of BMBO&RP along with those of 
BSMBO&C, will analyze the impact of model uncertainty on BMBO&RP and suggest improvements to it, and 
will show the performance/reliability insured by BMBO&RP within the aforementioned case study. 

2. Application of dynamic optimization and optimal control to runaway detection/prevention 

NMPC/DRTO algorithms generate the optimal control policy for a given system via the system model. In 
particular, these methods use the model to predict the future operating conditions of the process as a function 
of the trajectories of its manipulated variables and calculate the trajectory (control policy), which insures the 
best system performance in the future. Consequently, it is evident that any NMPC/DRTO strategy for batch 
systems can predict runaways before they occur. However, the only NMPC/DRTO methods, which are able to 
automatically prevent runaways, are those which treat the batch cycle time as an additional optimization 
variable (BSMBO&C is one of the few methods having this feature). Such methods can automatically 
decide/suggest to stop a batch cycle whenever a critical event (critical process disturbance, equipment fault, 
etc.) occurs that would unavoidably cause a runaway in the future. 
This said, BMBO&RP is an adaptation of BSMBO&C, where the user-supplied objective function fObj

BSMBO&C (a 
measure of the performance of the batch process) and the tuning coefficients are modified/selected according 
to specific rules. In particular, fObj

BSMBO&C is modified by adding an event-based penalty term that progressively 
increases as the system approaches runaway conditions. The specific definition of this penalty term is 
problem-dependent but, a very reasonable choice for batch reactors is to formulate it as shown in Eq(1) (this 
is the commonest case). If the batch unit, which may undergo runaway, is not a reactor, we need to 
reformulate the penalty term from case to case. 
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The tuning coefficients are computed via ad-hoc formulas found in the article by Rossi et al. (2015). We do not 
report those formulas for brevity but encourage the reader to read the reference paper. 
Since BMBO&RP strongly relies on BSMBO&C, we have to convey some additional information on this latter 
methodology before discussing the issue of model uncertainty. 
 

2.1 The BSMBO&C framework 

BSMBO&C is a strategy for the dynamic optimization and optimal control of batch systems (Rossi et al., 
2014a). This approach allows us to manage a batch process by simultaneously adjusting both its manipulated 
variables and its batch cycle time. Moreover, this framework supports any user-defined objective function 
(even non-smooth ones), which has to measure the system profitability.  
At run time, BSMBO&C first performs an initialization step and then iteratively executes a sequence of 
operations (BSMBO&C basic step) until a stopping condition is satisfied (Figure 1). The initialization serves to 
provide the algorithm with the user-defined inputs: the process model, the user-supplied objective function 
(fObj
BSMBO&C), the upper/lower bounds on the system states and the manipulated variables, and the tuning 

parameters. The basic step is the core of the algorithm and consists of three phases: (I) an optimization step 
used to compute the next optimal control action; (II) the application of this control action to the batch process; 
and (III) the measurement of the system response and check of the stopping condition. Finally, the stopping 
condition allows the algorithm to identify whether the optimal cycle time is reached by the end of the current 
control action, thus deciding when to terminate the iterative execution of the basic step. 
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As a final remark, it is important to mention that BSMBO&C relies on the numerical routines of BzzMath library 
(Buzzi-Ferraris and Manenti, 2012), which are very efficient in handling strongly nonlinear problems. 
Therefore, BSMBO&C is particularly suitable for application to batch systems that may exhibit runaway/loss of 
control.  

 

Figure 1: Simplified block diagram of the BSMBO&C framework. 

2.2 The impact of model uncertainty 

BMBO&RP has been designed under the assumption that a very accurate model of the batch process is 
available. Because it relies on a deterministic NMPC/DRTO framework, i.e. BSMBO&C, the presence of 
model uncertainty might potentially alter both its capability of predicting and preventing runaways and its ability 
of insuring high process performance. In fact, BMBO&RP fully relies on model predictions to identify future 
runaways and optimize the process performance, but such predictions are no longer reliable. 
The most intuitive solution to this problem is to preserve the general architecture of BMBO&RP and replace 
BSMBO&C with a robust NMPC/DRTO framework, which retains all of its features (Rossi et al. (2016) have 
already developed this robust version of BSMBO&C and named it RBSMBO&C). The resulting robust version 
of BMBO&RP, named RBMBO&RP, would rely on RBSMBO&C, which is perfectly able to handle model 
uncertainty using stochastic programming. However, it is worth mentioning that this modification generates a 
downside, i.e. RBMBO&RP is much more computationally demanding than BMBO&RP. 
A less computationally demanding solution is to alternate BMBO&RP and RBMBO&RP based on this 
rationale: (I) we use BMBO&RP whenever all the process states are sufficiently far away from their upper and 
lower bounds; and (II) we switch to RBMBO&RP whenever one or more states approach either their lower or 
their upper bounds. This alternative approach is reasonable only whether BMBO&RP can identify and prevent 
runaways even under uncertainty. This is sensible because the driving-force of a runaway is usually a huge 
process disturbance or a critical fault, which would cause loss of control according to the predictions of any 
realization of model uncertainty, i.e. any possible inaccurate model with which BMBO&RP is provided. 
Moreover, even if BMBO&RP were unable to detect a future runaway, RBMBO&RP would eventually predict it 
and prevent it before it can occur. Recall that RBMBO&RP would take over whenever one of the process 
states approaches one of its bounds and this is going to happen before the runaway can take place. 
Both of the proposed solutions are reasonable and worth some further investigation. In this manuscript, we 
focus on the second. In particular, we use a case study to show that BMBO&RP can identify and prevent 
runaways under uncertainty in a reliable fashion. 

3. Safe production of 2-butyl propanoate via acid-catalyzed esterification 

The production of 2-butyl propanoate via acid-catalyzed esterification of 2-butanol is a typical example of 
process, which can exhibit thermal runaway. Since it represents an entire category of unstable chemical 
processes, it is a meaningful benchmark. We assume that it is carried out batch-wise using a fed-batch 
reactor, where 2-butanol is preloaded in the vessel along with a small amount of sulfuric acid, which acts as 
homogeneous catalyst, and propionic anhydride is slowly fed to the reaction environment over the entire batch 
cycle (Figure 2). Our final goal is to maximize the productivity of 2-butyl propanoate that corresponds to 
maximizing the conversion of 2-butanol, because no significant side reactions take place inside the process 
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operating window. In order to perform this task, we can manipulate both the feed flow of propionic anhydride 
(FIN) and the coolant flow (Fj). 

 

Figure 2: Simplified PFD of the production process of 2-butyl propanoate via acid-catalyzed esterification of 2-

butanol (manipulated variables are enclosed in circles while uncertain parameters are enclosed in squares). 

Since in this case study we focus on showing that BMBO&RP can identify and prevent runaways even under 
uncertainty, we assume that both the global heat transfer coefficient of the reactor U and the activation energy 
𝐸2, used to compute the kinetic constant 𝑘20 of reaction (1) (see Figure 2), are uncertain parameters. In 
particular, we assume that U can vary up to ± 20% and 𝐸2 up to ± 3% with regard to their nominal values. We 
also consider that the joint probability distribution of U and 𝐸2 is a bivariate Gaussian distribution with diagonal 
variance-covariance matrix, i.e. the two uncertain parameters are uncorrelated. 
Finally, the uncertain process model is derived under conventional assumptions such as perfect mixing, 
temperature-independent thermodynamic properties, and constant density of the reacting medium (this 
assumption has been verified). The resulting model is a system of 9 ODEs, including 7 mass balances and 2 
energy balances, which are not reported for space limitations. 

 

Figure 3: Simulations performed with BMBO&RP both in the presence and in the absence of model 

uncertainty, i.e. in both real and ideal conditions (dots surrounded by squares or circles represent the 

simulations where BMBO&RP can successfully identify and prevent a runaway). 

Exploiting all the data reported so far, we have used BMBO&RP to run 14 simulations in ideal conditions, i.e. 
in the absence of model uncertainty, and as many simulations in real conditions, i.e. in the presence of model 
uncertainty. The pseudo-real processes used to run the two groups of simulations have been selected so as to 
cover the uncertainty space (bi-dimensional space of U and 𝐸2) uniformly. Moreover, in all of the 28 
simulations, we have assumed that a critical equipment fault occurs about 15 min after the beginning of the 
batch cycle. The fault selected is a leakage in the feed flow control valve, which causes an unwanted and 
uncontrollable amount of propionic anhydride to enter the reactor over time. 
Figure 3 shows how the ideal and real simulations are laid out in the uncertainty space, represented in terms 
of two dimensionless parameters ∆U and ∆𝐸2, which are proportional to U and 𝐸2 according to Eq(2). This 
figure also shows that the equipment fault (feed valve uncontrolled leakage) triggers a runaway in every single 
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simulation and confirms that BMBO&RP is able to identify all those runaways both in the presence and in the 
absence of model uncertainty (all dots are surrounded by circles/squares).  
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After observing that BMBO&RP can also identify runaways under uncertainty, we are interested in the control 
policy applied to the batch reactor before any cycle is aborted. This information is reported in Figure 4. 

 

Figure 4: Control policy applied to 10 of the simulations showed in Figure 3 and resulting temperature profiles 

inside the reactor (𝐹𝐼𝑁 is the actual feed flow reduced by the flow due to the leakage and represents the actual 

control policy suggested by BMBO&RP). 
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Note that, as soon as the equipment fault occurs, BMBO&RP tries to increase the coolant flowrate and reduce 
the feed flow (the valve is leaking but we can still try to close it at least to reduce the flow of propionic 
anhydride entering the reactor). However, it soon realizes that it is impossible to keep the reactor under 
control, thus it decides to terminate the cycle a few minutes later. It is important to notice that BMBO&RP lets 
the reactor temperature (𝑇𝑅) almost reach the upper bound, i.e. 373.15 K, before stopping the batch cycle. At 
least in this specific case, this is not a serious concern because it is enough to introduce a small amount of 
sodium hydroxide in the reactor to neutralize the sulfuric acid and stop the reaction immediately. On the other 
hand, this temperature trend is compliant with our objective, i.e. the maximization of the conversion of 2-
butanol. This latter observation suggests that BMBO&RP can not only predict and prevent runaways but also 
decide when to abort a batch cycle to minimize performance loss. In that, BMBO&RP is smarter than a regular 
control system coupled with a conventional alarm system. 

4. Conclusions 

In this contribution, we have discussed the extent to which dynamic optimization and optimal control 
algorithms for batch processes can identify and insure automatic prevention of runaways under uncertainty. 
The key concepts, which we have discussed, are: (I) the features that an NMPC/DRTO strategy must possess 
to be suitable for runaway prediction and prevention; (II) the usage of RBMBO&RP and the alternated use of 
both RBMBO&RP and BMBO&RP to handle the rigorous identification and prevention of runaways under 
uncertainty; and (III) the confirmation that specific classes of deterministic NMPC/DRTO frameworks can 
reliably identify and prevent runaways even under uncertainty (see the results of the case study).  
The third observation is the most important finding of the paper. Specific classes of deterministic NMPC/DRTO 
frameworks can always identify and prevent runaways because runaway is an extreme phenomenon 
generated by a critical event, which is very likely to cause loss of control according to the predictions of any 
possible inaccurate model fed to the NMPC/DRTO strategy. We can say that NMPC/DRTO is somewhat 
intrinsically robust with regard to the identification and prevention of runaways. 
In conclusion, it is important to say that specific types of deterministic NMPC/DRTO can predict and prevent 
runaways under uncertainty but cannot convey any information on how to shut down the batch unit safely (this 
usually implies introducing some inhibitor). As already pointed out, this is not a serious concern for the 
example reported in the manuscript, where the optimal shutdown policy is straightforward. However, in order 
to cope with this latter problem, we can only rely on RBMBO&RP. This is subject for future research work.      
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