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In ensuring safety of plant operation, both the reliability of plant components and human resources are 
important. Moving towards optimising resources, there is a need to prioritise intervention measures such as 
maintenance program and review of standard operating procedures. In this paper, a technique known as basic 
event ranking approach (BERA) is applied to a hydrogen station. BERA examines the relative importance of 
plant components based on their probability of failure within the realm of fault tree analysis model, and yields 
values of importance index for each basic event investigated. To incorporate changes in reliability data 
throughout the plant lifetime, a dynamic extension to BERA is introduced. The vulnerability of plant 
components and human actions are ranked with respect to the selected top events of fault trees generated 
from plant functions. The results revealed the potential of BERA to facilitate risk-based intervention initiatives 
to support process safety.  

1. Introduction 

Major accidents are characterised by complex causal patterns with many factors influencing the occurrence of 
such accidents. The efforts to track back various interaction of factors and the causes lead to accident can to 
be understood by using accident modelling approach to improve safety barriers and can be used as the 
prediction of future end states (Al-shanini et al., 2014a). Accident causes are not originated from technical 
aspect only but also from human and organisational deficiencies that could contribute to operational failures 
(Kidam and Hurme, 2013). Initiatives for process safety management system improvement have been 
proposed from global survey of process industries from all over the world (Pitblado, 2011). One of well-known 
organisational deficiencies in industry is perfunctory maintenance activity. Maintenance can keep the integrity 
of safety barriers and thus improve the prevention of major accidents.  80 from 183 major accidents reports in 
US and Europe from year 2000 to 2011 was related to inadequate maintenance (Okoh and Haugen, 2014). 
Maintenance in CPI is not just for ensuring the healthiness of components but it also plays a crucial role in 
achieving organisation’s goals especially when finance is a concern by ensuring optimum maintenance cost. 
This goal can be achieved by a systematic strategies of prioritise maintenance according to the hierarchy of 
vulnerability among the components. The importance measure (IM) techniques of Probabilistic Safety 
Assessment (PSA) is one of the tools that had broadly been used in many application to identify the relative 
importance of the component in the plant. It highlights the component that needs most attention to be 
improved to reduce risk that contribute to system failure or reduce chances of any accident cases. There were 
several IM techniques that had been established and more explanation about the methods can be find in the 
overview by Van der Borst and Schoonakker (2001).The latest IM method that had been established and 
undergo steady development was known as Basic Event Ranking Approach (BERA) (Khalil, 2016). 
Unlike other methods, the ranking of vulnerability using the BERA framework depends on several important 
factors, which are nominal failure probability of basic component, the number and type of gates that are 
connected to the top event (TE) with basic component xi, the number of minimal cut sets containing the xi and 
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the order of minimal cut sets that contain basic event. In this paper, further development of this method on 
dynamic updating by using Markov chain Monte Carlo (MCMC) simulation has been proposed and a simple 
case study of from Dujin will be used to demonstrate the technique (Kelly and Smith, 2009). 

2. Modelling Framework 

2.1 BERA 

The analysis starts by constructing the fault tree of the system, and based on the fault tree, the contribution of 
each element (xi) to the top event (TE) is analysed. The probability of top event, P(TE) is determined by the 
sum of all probability of minimal cut sets in the system, and is shown as Eq(1): 


N

k kMCSPTEP )()(    (1) 

Here, P(MCSk) is the probability of cut set k and N is the total number of cut sets in the system. Using these 
values, the cut-set importance measure (IMk) can be computed using Eq(2): 

𝐼𝑀𝑘 = 𝑃(𝑚𝑘)/𝑃(𝑇𝐸)    (2) 

Where IMk is the importance measure for cut set k, and mk is the failure probability of the cut set k. The cut-
sets importance measures can then be used to evaluate the importance index of each basic component using 
the proposed BERA equation, given as in Eq(3): 

𝐵𝐸𝑅𝐴 (𝑥𝑖) = 𝑃(𝑥𝑖) ∗ ∑ 𝐼𝑀𝐽
𝐿
𝐽=1      (3) 

Here, BERA (xi) is the importance index for the basic component xi, L is the number of minimal cut set that 
contains the basic component i, and IMj  is the minimal cut set’s importance measure that contains the basic 

component i.  

2.2 Dynamic BERA 

Importance measure has played an important role in identifying component vulnerability and maintaining 
safety in process industries, it is difficult for static BERA as it fails to capture the variation of risks as deviations 
or changes of the component condition in the process and plant take place. Further development dynamic 
updating of BERA methodology has been done by adapting Markov chain Monte Carlo (MCMC) simulation. 
Software called OpenBUGS is used to generate probability of BERA for every two month in one year (Lunn et 
al., 2009).  

3. Case Study 

As a case study, an on-site hydrogen station based on the work of Duijm and Markert (2009) is used. The 
schematic diagram of the plant is reproduced here as Figure 1. 

 

Figure 1: Schematic diagram of on-site hydrogen station (Duijm and Markert, 2009) 

The Fault Tree Analysis of the prevention barriers failures from this case study have been developed by Al-
Shanini (2014a). Fault tree model of External Ignition Barrier (EIB) failure is used to demonstrate the 
application of BERA methodology and its dynamic updating ability as shown in Figure 2. To prove the 
capabilities of this methodology on broader spectra, another fault tree model which is Maintenance Prevention 
Barrier (MPB) that consists of human error or organisational deficiencies also been used as shown in Figure 3. 
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Figure 2: External Ignition Barrier (EIB) Failure (Al-Shanini et al., 2014b) 

 

Figure 3: Maintenance prevention barrier (MPB) failure FT model (Al-Shanini et al., 2014b) 

In this analysis, hypothetical precursor data of prior parameters of basic events are used to implement the 
methodology. In cases where real data is available, this should be replaced by real ones. For this case study 
considered the time interval used is every two months in a year. 

4. Result and Discussion 

4.1 Ranking Computation Using BERA 

Using information from the both fault tree shown in previous section, the number of minimal cut sets can be 
determined and the top event probability can be computed using Eq(1). Fault tree in EIB giving final value of 
P(TPB) = 0.0301. Then, the cut set importance index (IMk) is determined by using Eq(2) and the ranking can 
be identified using Eq(3). Results obtained shown in Table 1 and Table 2. 

Table 1: Importance Measure (IM) of cut sets for EIB failure 

No of MCS MCS element CS probabilities Mk IMk 
1 X1 0.02 0.02 2.554 × 10-1 
2 X2 0.01 0.01 1.277 × 10-1 
3 X3,X4 (0.01,0.01) 1.00 × 10-4 1.277 × 10-3 

Table 2: Ranking of Components’ Vulnerability Using BERA for EIB failure 

Component Failure 
Probability 

No. of  
gates 

Gate  
Type 

No. of min.  
cut sets 

Order of cut 
sets 

BERA 
probability Ranking 

X1 0.02 1 OR 1 1 5.107   × 10-3 1 
X2 0.01 1 OR 1 1 1.277   × 10-3 2 
X3 0.01 2 AND-OR 1 2 1.2768 × 10-5 3 
X4 0.01 2 AND-OR 1 2 1.2768 × 10-5 3 
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The ranking is in descending order in terms of vulnerability, with X1 being most vulnerable. The result shows 
component X1 is the most vulnerable followed by X2, while X3 and X4 in the same rank. The high value of 
failure probability of component X1 has influence its ranking to be the most vulnerable component. 
Component X3 and X4 are in the same rank because of its similar prior probability and have been appeared 
once in the same cut set. This result is consistence with the factors that significantly affect BERA ranking as 
stated before. Same step in evaluating BERA is applied on MPB failure fault tree. The top event value for MPB 
failure fault tree is P(TPB) = 0.0315. The result shows in Table 3, basic event X11 is the most vulnerable 
followed by X3, X1, X6 and X7, X2, X9 and X10, X4 and the least vulnerable is basic event X8. Although the 
prior failure probability of X3 is higher than X11 but result shows that raking of X11 is higher than X3. This is 
because X11 has more number of gates and appears in three minimal cut set compare to X3 which has only 3 
numbers of gates and appear in only one cut set. This illustrates the effect of other criteria in BERA 
methodology in influencing the final ranking. 

Table 3: Ranking of Components’ Vulnerability Using BERA for MPB failure  

Basic  
event 

Failure 
Probability 

No.  
of gates Gate Type No. of min. 

cut sets 
Order of cut 
sets 

BERA 
probability Ranking 

X1 0.05 2 AND-OR 2 2,2 3.241 × 10-3 3 
X2 0.09 3 OR-AND-OR 1 2 2.763 × 10-3 6 
X3 0.1 3 OR-AND-OR 1 2 3.412 × 10-3 2 
X4 0.066 2 AND-OR 1 2 1.486 × 10-3 9 
X5 0.05 2 AND-OR 1 2 1.126 × 10-3 10 
X6 0.05 3 OR-AND-OR 3 2,2,2 2.900 × 10-3 4 
X7 0.05 4 OR-OR-AND-OR 3 2,2,2 2.900 × 10-3 4 
X8 0.01 4 OR-OR-AND-OR 3 2,2,2 1.160 × 10-4 11 
X9 0.05 3 OR-AND-OR 3 2,2,2 1.876 × 10-3 7 
X10 0.05 4 OR-OR-AND-OR 3 2,2,2 1.876 × 10-3 7 
X11 0.07 4 OR-OR-AND-OR 3 2,2,2 3.678 × 10-3 1 

4.2 Dynamic BERA 

Dynamic updating technique is carried out for further development on BERA methodology. Table 4 shows the 
hypothetical Information for hyper prior parameter and frequency failure data in a year to generate dynamic 
updating for every two month in a year. Table 5 shows the results generate from the simulation. Table 6 and 
Table 7 show the results of BERA and its ranking. The simplicity of result obtained where component X1 and 
X2 are in the same rank throughout the year. This is because of both components are involved with only 1 
gate and only appear once in a cut set. For component X3 and X4, several changes in ranking can be seen 
throughout the year because both of them involved with two gates where slightly more than component X1 
and X2. Overall, component X1 is the most vulnerable component and need more prioritisation in 
maintenance compare to other 3 components. 

Table 4: The hypothetical information of EIB failure 

Component Prior 
Probability 

Distribution Hyper - prior parameter Frequency of 
failure in one year ὰ ß 

X1 0.02 gamma 1.2 (4,3.333) 60 (3.5,0.058) C(1,0,0,0,1,0) 
X2 0.01 gamma 1.6 (1.28,0.8) 160 (40,0.25) C(0,0,1,1,0,0) 
X3 0.01 gamma 1.8 (2.4,1.333) 180 (90,0.5) C(0,1,0,0,0,0) 
X4 0.01 gamma 1 (3,3) 100(145,0.145) C(0,1,0,0,1,0) 

Table 5: Failure probability for six period of EIB failures 

Com- 
ponent 

Frequency of  
failure in one year 

Prior 
Probability 1st 2nd 3rd 4th 5th 6th 

X1 C(1,0,0,0,1,0) 0.02 0.08524 0.04271 0.03853 0.03283 0.07298 0.03739 
X2 C(0,0,1,1,0,0) 0.01 0.009992 0.009894 0.0253 0.03029 0.02359 0.0217 
X3 C(0,1,0,0,0,0) 0.01 0.00983 0.0199 0.01392 0.01353 0.01331 0.01304 
X4 C(0,1,0,0,1,0) 0.01 0.009757 0.02346 0.0127 0.01255 0.02474 0.01521 
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Table 6: BERA result for every two months in a year of EIB failures 

Compo-
nent 

Prior  
Probability 1st 2nd 3rd 4th 5th 6th 

X1 5.1073 ×10-3 2.4139 ×10-1 6.0603 ×10-2 4.9321 ×10-2 3.5808 ×10-2 1.7695 ×10-1 4.6446 ×10-2 
X2 1.2768 ×10-3 3.3169 ×10-3 3.2522 ×10-3 2.1265 ×10-2 2.0481 ×10-2 1.8488 ×10-2 1.5644 ×10-2 
X3 1.2768 ×10-5 3.1323 ×10-5 3.0865 ×10-4 8.1755 ×10-5 7.6326 ×10-5 1.4561 ×10-4 8.5925 ×10-5 
X4 1.2768 ×10-5 3.1090 ×10-5 2.6357 ×10-4 7.4590 ×10-5 7.0798 ×10-5 2.7065 ×10-4 1.0022 ×10-4 

Table 7: BERA Ranking of EIB failures 

Component Data for one year Prior 1st 2nd 3rd 4th 5th 6th 
X1 C(1,0,0,0,1,0) 1 1 1 1 1 1 1 
X2 C(0,0,1,1,0,0) 2 2 2 2 2 2 2 
X3 C(0,1,0,0,0,0) 3 3 3 3 3 4 3 
X4 C(0,1,0,0,1,0) 3 4 4 4 4 3 4 
 
More discussion can be done if larger network of fault tree with more basic event and gates is used. Therefore 
for more detail explanation, another fault tree is used to demonstrate dynamic BERA from the same case 
study but focusing more on human error or organisational deficiencies. Table 8 shows hypothetical data that 
had been used to generate result of this technique. 

Table 8: The hypothetical information of MPB failure 

BE 
Prior 
Probability Distribution 

Hyper - prior parameter Frequency of failure 
in one year  ὰ ß 

X1 0.05 Gamma 5 (2,0.4) 100 (145,0.145) C(1,0,1,0,1,1) 
X2 0.09 Gamma 2.13 (3.0,4.225) 23.666 (3.0,1268) C(0,1,0,0,0,1) 
X3 0.1 Gamma 3 (1.5,0.5) 30 (7.5,0.25) C(1,2,1,0,0,1) 
X4 0.066 Gamma 3 (1.8,0.6) 45.45 (17,0.375) C(0,1,0,0,0,1) 
X5 0.05 Gamma 2.5 (1.5,0.6) 50 (3.5,0.07) C(1,0,1,1,0,0) 
X6 0.05 Gamma 2.3 (2.576,1.12) 46 (2.76,0.06) C(1,0,0,0,0,1) 
X7 0.05 Gamma 2 (2.24,1.12) 40 (5.5,0.1375) C(2,1,0,0,1,0) 
X8 0.01 Gamma 1.6 (1.28,0.8) 160 (40,0.25) C(0,1,0,1,0,1) 
X9 0.05 Gamma 3.55 (1.775,0.5) 71.1 (15,0.211) C(0,0,0,0,1,2) 
X10 0.05 Gamma 2.25 (3.0,1.333) 45 (7.5,0.1666) C(1,1,0,1,2,0) 
X11 0.07 Gamma 1.47 (1.323,0.9) 21 (3,0.143) C(1,0,0,1,0,1) 

Table 9: BERA result every two month in a year of MPB failure 

BE Prior 1st 2nd  3rd  4th 5th 6th 
X1 3.2410 ×10-3 5.7670 ×10-2 3.0870 ×10-2 8.0370 ×10-2 1.7950 ×10-2 4.4410 ×10-2 6.6910 ×10-2 
X2 2.7630 ×10-3 2.5550 ×10-4 4.2150 ×10-3 7.3997 ×10-3 2.8370 ×10-3 3.4870 ×10-3 2.3340 ×10-2 
X3 3.4120 ×10-3 2.8450 ×10-3 1.3198 ×10-2 1.4250 ×10-1 4.2720 ×10-2 4.7450 ×10-2 7.0670 ×10-2 
X4 1.4860 ×10-3 2.2840 ×10-2 5.0790 ×10-2 3.6199 ×10-2 2.8603 ×10-2 2.3910 ×10-1 2.3610 ×10-2 
X5 1.1260 ×10-3 6.4050 ×10-2 4.5760 ×10-2 7.2502 ×10-2 7.0420 ×10-2 2.3980 ×10-2 2.2870 ×10-2 
X6 2.8999 ×10-3 5.1240 ×10-1 1.1440 ×10-1 3.9507 ×10-2 5.1920 ×10-2 3.0110 ×10-2 8.7697 ×10-2 
X7 2.8999 ×10-3 7.7970 ×10-1 5.3670 ×10-1 1.1040 ×10-1 1.4380 ×10-1 2.5360 ×10-1 1.0160 ×10-1 
X8 1.1600 ×10-4 1.2490 ×10-3 6.0440 ×10-3 1.8903 ×10-3 3.2580 ×10-3 2.3730 ×10-3 9.0730 ×10-3 
X9 1.8764 ×10-3 3.4510 ×10-2 2.5990 ×10-2 1.2930 ×10-2 1.2990 ×10-2 2.6780 ×10-2 5.6090 ×10-2 
X10 1.8764 ×10-3 1.8160 ×10-1 2.0720 ×10-1 5.1090 ×10-2 1.1630 ×10-1 2.5780 ×10-1 8.2030 ×10-2 
X11 3.6778 ×10-3 1.0590  2.1280 ×10-1 4.9670 ×10-2 1.8570 ×10-1 5.2340 ×10-2 1.2550 ×10-1 
 
Table 9 and Table 10 show the result obtained. In dynamic BERA, another important factor is added for 
determining the raking which is frequency of failure in a year. Along with other factors mention previously, rank 
of basic event in certain period is relatively affected by the failure of other basic event in the system. As for 
example, for basic event X3 in 3rd period, the rank is significantly change from 9 to 1 due to few failure among 
basic event happen in that period as well as driven by its large prior failure probability. Comparing basic event 
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X2 and X8, although failure probability of basic event X2 is high compare to X8, both remain in lower rank 
because basic event X2 involve in few failure throughout the year compare to X8. 

Table 10: BERA Ranking of MPB failures 

BE Frequency of failure in one year  Prior 1st 2nd 3rd 4th 5th 6th 
X1 C(1,0,1,0,1,1) 3 6 7 3 8 6 6 
X2 C(0,1,0,0,0,1) 6 11 11 10 11 10 9 
X3 C(1,2,1,0,0,1) 2 9 9 1 6 5 5 
X4 C(0,1,0,0,0,1) 9 8 5 8 7 3 8 
X5 C(1,0,1,1,0,0) 10 5 6 4 4 9 10 
X6 C(1,0,0,0,0,1) 4 3 4 7 5 7 3 
X7 C(2,1,0,0,1,0) 4 2 1 2 2 2 2 
X8 C(0,1,0,1,0,1) 11 10 10 11 10 11 11 
X9 C(0,0,0,0,1,2) 7 7 8 9 9 8 7 
X10 C(1,1,0,1,2,0) 7 4 3 5 3 1 4 
X11 C(1,0,0,1,0,1) 1 1 2 6 1 4 1 

5. Conclusion 

A new IM technique called basic event ranking approach (BERA) has been applied to a hydrogen station as a 
case study. BERA examines the relative importance of plant components based on their probability of failure 
within the realm of fault tree analysis model, and yields values of importance index for each basic event 
investigated. Several important factors that affect ranking of vulnerability of BERA which are nominal failure 
probability of basic event, the number and type of gates that are connected to the top event (TE) with basic 
event xi, the number of minimal cut sets containing the xi and t the order of minimal cut sets that contain basic 
event. In dynamic updating BERA, frequency of event failure added up the important factors that determine 
the BERA ranking. Although prior aims of BERA are to find the vulnerability hierarchy among components, this 
technique can also broaden its application to identify human error or organisational deficiencies that contribute 
most challenge to practice safety in process industry. BERA is considered potentially useful in assessing the 
vulnerability of basic component for planning plant maintenance and upgrade process safety activities. 
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