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The main objective of the present work is to study the effect of the nickel catalyst on pyrolysis of coconut copra 

and rice husk via thermo gravimetric analysis (TGA). The optimisation of catalyst weight ratio on biomass is also 

determined. The sample is pyrolysed from 30 °C up to 700 °C at 10 °C/min of heating rate in nitrogen (N2) 

environment flowing at 150 mL/min. The catalyst (Ni-Ce/Al2O3) was prepared via wet impregnation method, with 

alumina (Al2O3) as support, while cerium (Ce) and nickel (Ni) act as promoter. The samples were prepared 

accordingly with biomass to catalyst weight loading ratio and labelled as follows; rice husk as RH-2 (1 : 0.15) 

and RH-3 (1 : 0.50) including coconut copra as CC-2 (1 : 0.15) and CC-3 (1 : 0.50). For comparison, the pyrolysis 

of coconut copra and rice husk without catalyst also are conducted at the same operating condition and named 

as CC-1 (1 : 0) and RH-1 (1 : 0). The TGA-DTG curves show that, the presences of catalyst significantly affect 

the devolatilisation rate of biomass. The highest volatile matter was achieved by CC-2 at 83.27 % compared to 

RH-2 at only 46.66 %. Although at similar biomass to catalyst weight ratio of 1 : 0.15, the coconut copra is more 

favourable to yield a high volatile matter than the rice husk. At the same time, both biomass samples specifically 

CC-3 and RH-3 have achieved the highest in solid residual yield. Overall, the mass loss of volatile matter 

decreases in the order of CC-2 > CC-1 > CC-3 > RH-1 > RH-2 > RH-3. In summary, the optimum catalyst 

loading was at CC-2 and RH-2 that work best to degrade at the highest mass loss of volatile, in which attributes 

to higher yield of pyrolysis oil.  

1. Introduction 

Biomass from agricultural waste is considered as one of the renewable energy sources with the highest potential 

to contribute to the energy needs of modern society (Vasilkovová et al., 2014). In South East Asian countries, 

specifically Malaysia has established targets for the application of fuels generated from agricultural wastes as 

an alternative source of energy. Previous study on agricultural production shows that coconut and paddy 

plantations are among the major agricultural crops grown in Malaysia (Shafie et al., 2012). The solid wastes 

from these two agricultural sectors produced in large quantities which have no economic values. The utilisation 

of biomass is very important in order to preserve the environment from the disposal wastes. As reviewed by 

Zhang et al. (2013), the thermochemical conversion also known as pyrolysis has great potential to generate 

valuable product from biomass in the form of energy such as bio-char (solid), pyrolysis oil (liquid product) and 

pyrolysis gas (a mixture of gas product). Another advantage of pyrolysis is it could yield more liquid products 
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than solid and gas products. Apart from the advantages of biomass pyrolysis, the produced raw pyrolysis oil 

from biomass has several shortcomings that limit its wide applications such as highly oxygenated, viscous, 

corrosive, relatively unstable and chemically very complex (Baniasadi et al., 2016). At the same time, the 

generated raw pyrolysis oils have valuable advantages including less toxicity, good lubricity and stronger 

biodegradation. It is therefore necessary to upgrade the raw pyrolysis to extent its applications as transportation 

fuels and as gasoline enhancers in petrochemical industry. Selecting a proper upgrading technique is crucial 

decision due considering on several factors like costing, efficiency and easy handling of the system. Many 

researchers studied on the best upgrading method to enhance the physical and chemical properties of raw 

pyrolysis oils (Arregi et al., 2015). It is found that catalytic cracking method to be most promising method with 

low cost, higher liquid product yield and straightforward system (Zhang et al., 2013). The catalytic cracking only 

works at best with suitable catalyst structure to achieve the desired products.  

It has been shown that Ni/Al2O3 based catalysts are active and selective for conversion of biomass into pyrolysis 

oils with improved qualities of low oxygenated compounds (Chitsazan et al., 2016). Similar study by Chen et al. 

(2016) found that Ni loading on Al2O3 has greatly improved the product distribution due to NiO as promoter is 

well dispersed on the surface of support (Al2O3).  In the absence of catalyst, the concentration of CO and H2 

was at 45 vol% and 18 vol%, while with Ni/Al2O3 catalyst, the concentration of H2 significantly increased to 45 

vol% and CO concentration reduced to 30 vol%. This might be due alumina alone itself has greater cracking 

ability and aromatisation towards the product distribution. Zhang et al. (2013) has reviewed that, nickel (Ni) is 

most commonly used as catalyst in upgrading process of catalytic pyrolysis of biomass due to their higher 

reactivity, low cost and high availability. Presences of catalyst in pyrolysis of biomass will increase the coke 

yield either on external or internal surfaces of catalyst. Coking on catalyst lead to deactivation of catalyst and 

reduce its lifetime due to blockage on active sites of catalyst by intermediate products of pyrolysis. Previous 

study proved that the presence of cerium oxide can be helpful in avoiding metal sintering on the catalyst surface 

(Xu et al., 2014). Similar study by Cheah et al. (2013) found that, cerium was used due its high redox property 

that able to prevent coking on catalyst. By considering the above mentioned problem, it is decided to incorporate 

cerium (Ce) as supports for Ni/Al2O3 catalyst in this study for pyrolysis of coconut copra and rice husk to increase 

the catalyst lifetime. Stefanidis et al. (2014) investigated the catalytic pyrolysis of biomass using 

thermogravimetric analyser (TGA) and found that it is more convenient to predict thermal behaviours. Generally, 

the TGA data is plotted with y-variables of weight change rates and x-variables of temperatures, in which easy 

to understand the thermal degradation behaviours. Thus, these curves are used to determine the apparent 

weight loss of sample with increasing temperature. 

The comprehensive study on the optimum weight ratio loading of catalyst on biomass using Ni-Ce/Al2O3 as 

catalyst on catalytic pyrolysis of coconut copra and rice husk via thermo gravimetric analysis (TGA) is lacking 

in literature. In this research coconut copra and rice husk was catalytically pyrolysed in TGA at different weight 

biomass to catalyst ratio (1 : 0, 1 : 0.15 and 1 : 0.50). The TGA results were plotted in two separate curves (TG 

and DTG curves). The curves were divided into three phases of thermal degradation to investigate on the 

thermal behavior of catalytic pyrolysis of biomass. Finally, the optimum value of the biomass to catalyst ratios 

was discussed. 

2. Materials and methods  

2.1 Preparation and characterisation of biomass 

Coconut copra and rice husk were abundantly found in Malaysia. Coconut copra samples were collected from 

local producers while, rice husk samples were supplied by Padiberas Nasional Berhad (BERNAS). These 

samples were dried under sunlight before drying at 105 °C in an oven for an overnight to reduce its moisture 

contents <10 wt%. Then, it was sieved below than 0.50 mm. The dried samples were kept in a desiccator to 

prevent moisture absorption from the surrounding humidity. After that, the biomass samples were characterised 

to obtain the ultimate, proximate and high heating value (HHV). The ultimate analysis was carried out using an 

Elemental Analyser, Euro EA 3000 using Callidus Software interface Version 4.1 to determine the amount of 

carbon, hydrogen, nitrogen, and sulphur, while oxygen was then calculated by difference. Proximate analysis 

was conducted using thermogravimetric analysers (TGA) to analyse the amount of volatile matter (VM), moisture 

content (MC) and ash content (AC), while the fixed carbon (FC) was then obtained by simple subtracting 

calculation (FC=100-VM-MC-AC). The HHV of biomasses were determined by using bomb calorimeter.  

2.2 Catalyst preparation 

The Ni-Ce/Al2O3 catalyst was prepared by wet impregnation method for the catalytic pyrolysis of coconut copra 

(CC) and rice husk (RH) in TGA. Cerium (III) Nitrate Hexahydrate [Ce(NO3)3·6H2O, 97 %], Nickel (II) Nitrate 

Hexahydrate [(Ni(NO3)2·6H2O, 99 %] and Alumina [Al2O3, 99 %] were purchased from Sigma Aldrich. The 

amount chemical weight was fixed at 20 wt% of Ni, 5 wt% of Ce and 75 wt% of Al2O3. All the three chemicals 
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were added accordingly to the ratio into the 80 mL of deionised water (DI) and stirred for 4 h keeping at 80 °C. 

After 4 h, the catalyst was further dried in an oven at 105 °C for vaporisation of water compounds. The catalyst 

was calcined in a muffle furnace at 750 °C for 4 h and stored in a desiccator. The catalyst (solid powder) was 

sieved to below 125 µm in order to increase the surface area of catalyst. 

2.3 TGA-Pyrolysis experimental procedure 

The samples for TGA were prepared prior accordingly with biomass to catalyst weight loading ratio. There are 

six samples were prepared at different weight loading and labelled as follows: CC-1 (1 : 0), RH (1 : 0), CC-2 (1 

: 0.15), RH-2 (1 : 0.15), CC-3 (1 : 0.50), and RH-3 (1 : 0.50).  Thermogravimetric analyser (TGA) was used to 

investigate the weight loss of catalytic pyrolysis of biomass and the evolution of pyrolysis vapor simultaneously. 

The prepared samples approximately 5 mg were first heated to 110 °C and kept at that temperature for about 

30 min to remove remaining moisture contents. After that the samples were individually heated to a maximum 

temperature of 700 °C in nitrogen (N2) atmosphere flowing at 150 mL/min at fixed heating rate of 10 °C/min.   

3. Results and discussions 

3.1 Properties and compositions of coconut copra 

The feedstock samples were characterised to obtain the ultimate, proximate and high heating value (HHV) as 

shown in Table 1. The moisture content found in biomass must be removed through evaporation so that heat 

supply can easily propagated into the biomass structure. The moisture contents of rice husk and coconut copra 

were almost in similar at 6.73 wt% and 6.10 wt%. Zhang et al. (2013) found that no moisture content was 

developed from rice husk during the process due to the samples was dried at 105 °C for 12 h. Allowing biomass 

to dry for long period of time cause the moisture contents to completely evolved from biomass. Coconut Copra 

has fewer ash content (0.57 wt%) than the rice husk (17.06 wt%). The higher ash content in rice husk is due to 

higher silica components. Fu et al. (2012) investigated on the chemical analysis of ash in rice husks and found 

that, silica forms as the main component of ash at 87.33 wt% in the rice husk. Rice husk contains undesirable 

high amount of oxygen compositions at 38.09 wt% that might influence to generate low HHV (17.91 MJ/kg). 

Widayatno et al. (2016) reported that biomass materials that generate low HHV is due to the presence of large 

amount oxygen compounds. Apart of that, rice husk contains the highest fixed carbon composition at 20.33 wt% 

than that of coconut copra, which is only 17.59 wt%. Demirbaş (2003) investigated on the relationship between 

lignin and fixed carbon contents of biomass samples. It is reported that lignin contents are a function of fixed 

carbon in biomass and higher amount of fixed carbon will increase the char yield and decrease the liquid product 

yield. The volatile matter (VM) is the main concerned in this study, because it can be converted into pyrolysis 

oil and gases during the pyrolysis process. Among the both samples, coconut copra has the highest volatile 

matter at 75.74 wt% than rice husk at only 55.88 wt%. It is expected that coconut copra will produce more 

pyrolysis oil as compared to rice husk. Apart from proximate analysis, ultimate analysis is also taken into account 

to study the amount of other elements such as carbon, hydrogen, oxygen, nitrogen and sulphur in the biomass. 

High compositions of carbon and hydrogen with low oxygen compositions are more preferred to obtain more 

aromatic liquid products. The study shows that  

55.84 wt% of carbon and 10.17 wt% of hydrogen contents were found in coconut copra that explains its higher 

calorific value in coconut copra. The composition of carbon and oxygen in rice husk was at  

38.33 wt% and 38.09 wt% shows almost similar values. It might be produced low quality pyrolysis oils (high 

acidity, corrosive, thermally unstable).  

Table 1:  Physicochemical properties of biomass 

Analysis  Coconut Copra Rice Husk 

Proximate analysis 

(d.b. wt%) 

Moisture  content 6.10 6.73 

Ash content  0.57 17.06 

Volatile matter 75.74 55.88 

Fixed Carbona  17.59 20.33 

High heating value (HHV) (MJ/kg) 30.22 17.91 

Ultimate analysis  

(d.b. wt%) 

Carbon  55.84 38.22 

Hydrogen 10.17 5.88 

Nitrogen  1.18 0.68 

Sulphur  0.12 0.07 

Oxygena  32.69 55.15 
aCalculated by difference, d.b.: dry basis. 
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3.2 Optimisation of catalyst loading on pyrolysis of biomass 

The influence of catalyst weight loading ratio on pyrolysis of rice husk and coconut copra was investigated via 

TGA. Pyrolysis of biomass was divided into three phases; vaporisation of moisture and light components (Phase 

I) developed at temperature below 150 °C, followed by Phase II of devolatilisation of hemicellulose and cellulose 

at temperature range of 150 - 450 °C and finally  the lignin decomposition denoted as Phase III that degraded 

at above 450 °C as shown in TG-DTG plot. The weight loss curves of thermo gravimetric (TG) and derivative 

thermo gravimetric (DTG) evolution profiles for all investigated samples were plotted in Figure 1a and 1b. 

Leftover of biomass materials after 700 °C was labelled as solid residual. 

In Phase I, all the samples developed the curves with less than 5.50 % of mass loss. It considered as negligible 

amount of mass loss. In general, the moisture is fully composed of water molecules that can easily evaporate 

once reached its boiling point of 100 °C. At the same time some light components of biomass might evaporate 

together when further increased the temperature up to 150 °C. increasing the catalyst weight loading on coconut 

copra has influenced to reduce the amount of mass loss during Phase I. without catalyst, CC-1 (1 : 0) sample 

has achieved about 3.57 % of total mass loss and it gradually decreases to 1.11 % when the catalyst loading 

increased as in CC-2 (1 : 0.15) and further increase of catalyst has drastically reduced mass to 0.11 % at CC-

3. Loading more catalysts does not show any beneficial effect on coconut copra. In contrast, rice husk samples 

specifically RH-2 has reduce the mass loss from RH-1 of 5.48 % to 3.95 %, but a little increase in catalyst weight 

(RH-3) has significantly increased to 4.17 % of mass loss. 

After the Phase I, the biomass continues to degrade in Phase II with more mass loss observed as shown in 

Figure 1 and 2. Hemicellulose and cellulose is known to be the major lignocellulosic components found in 

biomass, in which requires a very high temperature to fracture the complex bonds. These components were 

degraded and generate volatile matter in the temperature range of 150 to 450 °C. For example, in DTG plot, 

two peaks were developed in Phase II; first peak indicate the hemicellulose degradation and second is for 

cellulose degradation. The first peak shoulder degrades at lower degradation rate than the degradation rate of 

the second peak as in RH-1, RH-2, RH-3 and CC-1 samples. It might be due to the rice husk contain more 

cellulose composition than hemicellulose at 34.10 wt% and 27.30 wt% as reported by Goenka et al. (2015). CC-

2 and CC-3 samples only exhibit single peak, which both attained at 372 °C. This could be the influence of 

catalyst activity on thermal behaviour of coconut copra that promotes both hemicellulose and cellulose degrade 

faster and make the peak overlap and forms only in one single peak. Catalyst weight ratio does not influence 

the degradation temperature of rice husk and coconut copra but it strongly influences the degradation rate of 

biomass. The performance of catalyst can be observed for RH-2 and CC-2 where there is little increment in the 

mass loss for coconut copra at 83.27 % and vice versa for rice husk at 46.66 %. This might be due to the high 

silica content in rice husk that react with the nickel from catalyst and form amorphous phases that prevent from 

a complete reaction. CC-2 has also achieved the highest degradation rate at 0.0107 mg/s than the other samples 

as seen in DTG plot. This catalyst has shown good performance in cracking hemicellulose-cellulose structure 

in coconut copra than the rice husk. Further increase in catalyst weight loading on coconut copra at ratio of 1 : 

0.50 (CC-3) drastically decreased to 49.89 % of mass loss. Catalyst reactivity starts to reduce slowly on coconut 

copra with increasing catalyst amounts in Phase II.  

Finally, the biomass is continued to further degrade the lignin components that are more complex than the 

hemicellulose-cellulose structure. There is no peak was observed as can be seen in DTG plot (Figure 1b) in 

Phase III for both biomasses, thus the lignin gradually degraded to high temperature until 700 °C. The highest 

mass loss of lignin degradation was observed for RH-1 at 18.88 %, and as the catalyst loading increases the 

lignin mass loss decreases as such RH-2 (17.54 %) and RH-3 (15.95 %). Similar trend of decreasing in mass 

loss was also observed for coconut copra sample in Phase III.  

After Phase III completed the leftover biomass materials were considered as solid residual that has not been 

degraded within the temperature range from 30 to 700 °C as shown in Figure 1 (a and b). In this research, it is 

mainly focusing on optimising the yield of volatile matter by altering catalyst weight loading. The char content 

increases with increasing catalyst weight loading on coconut copra and rice husk. The non-catalytic sample, 

RH-1 and CC-1 has left 26.97 % and 2.18 % of solid residual. At the highest loading, RH-3 and CC-3 samples 

shows the highest residual content left at 41.79 % and 41.56 % and this amount is the mixture of solid char and 

unburnt catalyst. It can be concluded that, CC-2 and RH-2 ratio work best in catalytic cracking of biomass. The 

CC-2 shows the beneficial effect towards higher yield of volatile matter, in which attributes to the liquid oil 

production. 
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Figure 1:  A part of TGA (a) and DTG (b) for biomass samples 

 

Figure 2:  Volatile matter of mass loss for biomass 

4. Conclusions 

The thermogravimetric analysis (TGA) was successfully conducted to investigate the influence of catalyst weight 

loading on pyrolysis of coconut copra and rice husk. The results of the performed studied revealed that Ni-

Ce/Al2O3 are strongly active in pyrolysis of both coconut copra and rice husk. The non-catalytic sample of CC-

1 has achieved high mass loss in Phase II at 80.33 % than RH-1 at 48.67 %. It shows that coconut copra has 

high volatility and favourable for liquid oil production. The optimum performance of catalyst can be observed for 

RH-2 and CC-2 where there is little increment in the mass loss for coconut copra at 83.27 % and decrease in 

rice husk at 46.66 %. CC-2 has also achieved high degradation rate at 0.0107 mg/s from DTG curve than other 

samples. This catalyst has efficiently cracked more hemicellulose-cellulose components in coconut copra than 

rice husk. RH-3 and CC-3 shows almost similar solid residual content at 41.79 % and 41.56 %. The optimum 
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ratio was found at CC-2 and RH-2 (1 : 0.15) samples that work best in all three phases of thermal degradation 

on coconut copra and rice husk. 
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