

VOL. 56, 2017

Guest Editors: Jiří Jaromír Klemeš, Peng Yen Liew, Wai Shin Ho, Jeng Shiun Lim Copyright © 2017, AIDIC Servizi S.r.l., **ISBN** 978-88-95608-47-1; **ISSN** 2283-9216

Photocatalytic Carbon Dioxide and Methane Reduction to Fuels over La-Promoted Titanium Dioxide Nanocatalyst

Beenish Tahir, Muhammad Tahir, Nor A.S. Amin*

Chemical Reaction Engineering Group (CREG), Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor Malaysia. noraishah@cheme.utm.my

Selective photocatalytic carbon dioxide (CO₂) reforming of methane (CH₄) to carbon monoxide (CO) and hydrocarbons over lanthanum loaded titanium dioxide (La/TiO₂) nanoparticles has been investigated. TiO₂ nanoparticles (NPs) with different La-loadings were synthesised using sol-gel method. The catalysts were characterised using X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM) and Photoluminescence (PL) spectroscopy. Pure crystallite and anatase phase TiO₂ with hindered charge recombination were detected in the La-loaded TiO₂ samples. The products obtained were mainly CO, followed by ethane (C₂H₆) and traces of propane (C₃H₈). Pure TiO₂ was favourable for CO evolution, while La-loaded TiO₂ samples promoted hydrocarbons formation. The 2 wt% La/TiO₂ photocatalyst conferred the maximum C₂H₆ yield of 492.8 μ mole/g-cat at CO₂/CH₄ feed ratio 1.0 and irradiation time 2 h. The enhanced photocatalytic performance can be attributed to efficient reactant adsorption with hindered charge recombination rate in the presence of La-metal.

1. Introduction

Global warming effects due to the greenhouse gases, primarily carbon dioxide (CO₂) and methane (CH₄) emitted due to fossil fuels combustion and human activities is getting a lot of attention (Yang et al., 2016). Among the carbon capture and sequestration processes, conversion of CO₂ with CH₄ is particularly interesting because it is a promising route for direct conversion of both greenhouses gases into fuels (Tahir et al., 2015). The CO₂ reforming of CH₄ also called dry reforming is an endothermic process, requires higher input energy to be reduced to chemicals. The use of photo-technology is a promising strategy for the photocatalytic conversion of CO₂ and CH₄ to fuels under normal operating conditions (Gusain et al., 2016). However, efficient and selective photocatalytic system for enhanced CO₂ reforming of CH₄ to fuels is vigorously sought.

Among the semiconductor materials, titanium dioxide (TiO_2) is the most widely studied photocatalyst due to its numerous advantages such as low cost and excellent chemical and thermal stability (He et al., 2016). TiO₂ have poor photocatalytic activity due to the fast recombination of photo-generated charges. Loading metals into the lattice of TiO₂ can alter the morphology and structure to overcome the problems. Different metals such as Ni (Tahir et al., 2016), Cu (Gonell et al., 2016), Ag (Kong et al., 2013) and Au (Mei et al., 2013) have been investigated by various researchers to promote TiO₂ photoactivity and selectivity during photocatalytic CO₂ reduction applications.

Among the various metals for modification of TiO_2 , the use of basic oxide is considered as efficient way to promote CO_2 adsorption. In recent years, rare-earth metals are typically investigated for the modification of TiO_2 structure to enable the increment of surface oxygen vacancies. Cerium dioxide (CeO₂) was reported as an efficient material for selective photocatalytic CO_2 reduction to fuels (Liu et al., 2016). CeO₂ loaded into g-C₃N₄ remarkably enhanced photocatalytic activity for CO₂ reduction to CO and CH₄ (Li et al., 2016). The introduction of rare earth elements or their oxide into TiO_2 semiconductor are expected to utilise both the basic property for CO₂ activation and could improve photo activity for the trapping electrons over the TiO₂ surface. La has been reported as an efficient metal for selective photocatalytic CO₂ reduction with

 H_2O to CH_4 (Liu et al., 2015). The enhanced and selective photoactivity of La-loaded photocatalyst was due to higher CO_2 adsorption because of its surface basicity with proficient charge separation.

It is anticipated La-promoted TiO₂ catalyst would be appreciable to enhance photocatalytic CO₂ reduction with CH₄ to selective fuels. In this study, the photoactivity of different La-loaded TiO₂ catalysts were examined for selective CO₂ photoreduction with CH₄ to fuels under normal operating conditions. The photocatalytic reaction mechanism was analysed based on the experimental results.

2. Experimental

2.1 Catalyst preparation and characterisation

La-modified TiO₂ nanoparticles were synthesised using controlled sol-gel method. 15 mL of titanium tetra iso-propoxide was mixed in 45 mL of 2-propanol and stirred for 30 min in a 250 mL round bottom flask. The hydrolysis process was conducted by adding drop-wise 10 mL of 1 M acetic acid dissolved in 15 mL 2-propanol. The mixture was vigorously stirred for 24h at room temperature. Subsequently, lanthanum nitrate (LaNO₃ H₂O), dissolved in isopropanol, was added and stirred for another 6 h until a clear sol was obtained. The sol was dried in the oven at 80 °C for 24 h under air flow, then calcined in a muffle furnace at a rate of 5 °C min⁻¹ up to 500 °C for 5 h. Un-doped TiO₂ nanoparticles were also prepared using similar procedure.

The crystalline structure of the catalysts was ascertained by X-ray diffraction (XRD) recorded on a powder diffractometer (Bruker Advance D8, 40 kV, 40 mA) using a Cu K α radiation source in the range of $2\theta = 10 - 80^{\circ}$ with a step size of 0.05° and counting time of 5 s. The surface morphology was examined using field emission scanning electron microscopy (FE-SEM JEOL model JSM-6700F, Japan). Photoluminescence (PL) spectra of samples were recorded on a Raman Spectrophotometer (HORIBA Scientific) with a 325 nm emitting laser as an excitation source.

2.2 Photoactivity testing

The reactor consists of a stainless steel cylindrical vessel with a length of 5.5 cm and total volume of 150 cm³. An amount of 25 mg powdered photocatalyst was evenly introduced inside the cylindrical stainless steel chamber, equipped with a quartz window, for passing light irradiations using a 200 W Hg lamp as a UV light source. Compressed CO_2 (99.999 %) and CH_4 (99.999 %) were regulated by mass flow controllers (MFC). The two gasses passed through the reactor for 30 min to saturate the catalyst and to purge the reactor prior to the start of the experiment. Inlet and outlet valves were closed and the pressure inside the photoreactor was maintained at atmospheric pressure. The batch experiment was initiated by turning on the lamp for a duration of 2 h. The temperature inside the reactor was controlled using a temperature controller and maintained at 100 °C.

The products were analysed using an on-line gas chromatograph (GC-Agilent Technologies 6890 N, USA) equipped with a thermal conductivity detector (TCD) and a flame ionised detector (FID). The TCD detector was connected to UCW982, DC-200, Porapak Q and Mol Sieve 5A columns while the FID detector was connected with a HP-PLOT Q capillary column.

3. Results and discussion

3.1 Characterisation analysis of catalysts

Figure 1(a) presents the XRD patterns of the pure TiO_2 and 2 wt% La-doped TiO_2 samples. No rutile phase is detected, suggesting that the crystalline anatase phase of TiO_2 is formed at 500 °C. The XRD patterns of the La-modified TiO_2 samples are similar to those of pure TiO_2 . The signals corresponding to La is not observed possibly due to low amount of La-loading, which is below the detection limit of XRD, or the Laspecies are highly dispersed over the TiO_2 surface. Similar observations have been reported previously (Liu et al., 2015).

Photoluminescence (PL) analysis is an effective way to investigate optic characteristics of semiconductor nanomaterials, in particular, information about the surface oxygen vacancies and separation of photogenerated charges. Figure 1(b) shows the PL emission spectra of the pure TiO_2 and La-modified TiO_2 nanocatalysts excited at a wavelength of 325 nm. It is noticeable that the emission spectra of the La/ TiO_2 sample are similar to those of the pure TiO_2 , where the maximum intensity could be seen at a wavelength of 550 nm. This PL signals can be attributed to the transition of electrons from the oxygen vacancies to TiO_2 valance band. The PL intensity is decreased significantly in La/ TiO_2 compared to the pure TiO_2 sample. This is evidently due to the introduction of defects sites over the TiO_2 surface by La, resulting in hindered recombination of photo-generated charges (Khalid et al., 2012). PL measurements suggest that the lower the PL intensity the higher would be the photo-activity of nanocatalysts.

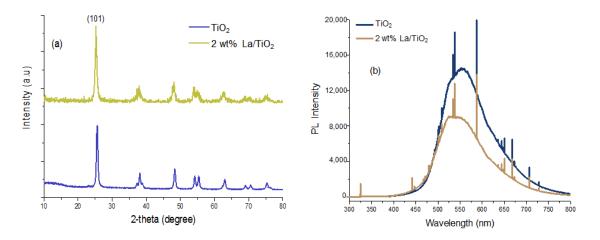


Figure 1: (a) XRD patterns of TiO₂ and 2 wt% La-loaded TiO₂ samples; (b) Photoluminescence (PL) spectra of TiO₂ and La-loaded TiO₂ nanoparticles

Figure 2 exhibits the morphology of pure and modified TiO_2 samples. The uniform and spherical nanoparticles of TiO_2 are obvious in Figure 2(a). This is probably due to the controlled growth of TiO_2 crystal lattice using the modified sol-gel method. The effect of La-loading on TiO_2 NP morphology is presented in Figure 2(b). The morphology of La-loaded TiO_2 samples are similar with the un-doped TiO_2 NPs. TiO_2 NPs are much smaller in La-loaded TiO_2 sample compared to pure TiO_2 . This is possibly due to the reduced crystallite sizes of TiO_2 in the presence of La, as a consequence of agglomerated particles.

Figure 2: FE-SEM image of TiO₂ and 2 wt% La/TiO₂ samples: (a) SEM image of TiO₂ NPs, (b) SEM image of 2 wt% La/TiO₂ nanoparticles

3.2 Photocatalytic CO₂ reduction with CH₄

Initially, blank experiments are conducted to confirm products formed are due to photoreduction of CO_2 and CH_4 only. Experiments were conducted in a gas phase system at 100 °C and irradiation time 2 h. In all types of catalysts, carbon containing compounds were not detected in the reaction system without reactants or light irradiations. Any carbon containing compounds produced were derived from CO_2 photoreduction with CH_4 during photocatalysis process.

The effects of La-loading on the activity of TiO₂ for CO₂ reduction with CH₄ to CO, C₂H₆ and C₃H₈ are presented in Figure 3(a). Pure TiO₂ registers smaller amounts of hydrocarbons but is more favourable for CO formation. The trends of CO and hydrocarbons formation were different with various La-loading. The amount of CO slightly decreases in 1 wt% La/TiO₂, but surge as La-loading increases to 3 %. The effects of La-loading onto TiO₂ performance for CO₂ photo-reduction with CH₄ to hydrocarbons (C₂H₆ and C₃H₈) are obvious compared to the pure TiO₂ sample. Higher hydrocarbons (C₂H₆ and C₃H₈) were detected over all types of La-loaded TiO₂ photo-catalysts with marginal effects conferred by 1 wt% and 2 wt% loading.

The yield of C₂H₆ was much higher compared to C₃H₈. Photocatalytic CO₂ reduction with H₂O to CH₄ has been reported using La-loaded TiO₂ photo-catalyst (Liu et al., 2015). It was detected that La was favourable for selective CH₄ production until 2 wt%, but over 5 wt% smaller amount of CH₄ was evolved. In the current study, photocatalytic CO₂ reforming of CH₄ is favourable for formation of C₂H₆ hydrocarbon fuels.

The products selectivity over un-doped and 2 wt% La-doped TiO₂ samples is presented in Figure 3(b). CO selectivity of 92.64 % was detected over pure TiO₂, which was decreased to 70.64 % in 2 wt% La-loaded TiO₂ samples. The selectivity of C₂H₆ evidently increased to 28.91 % over 2 wt% La/TiO₂ sample. These observations have confirmed that La is favourable for selective photocatalytic CO₂ and CH₄ conversion to hydrocarbon fuels. Introducing La into TiO₂ could effectively promote CO₂ and CH₄ adsorption over the TiO₂ surface which ultimately converted to CO and hydrocarbons. Enhanced photo-activity was evidently due to hindered charges recombination rate as evidenced in PL analysis.

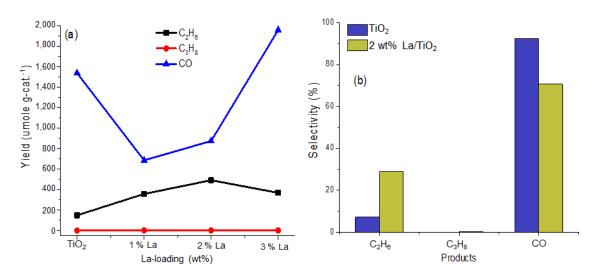


Figure 3: (a) Effect of La loading onto the photoactivity of TiO₂ NPs for CO₂ reduction with CH₄ to CO and hydrocarbons at 100 °C, irradiation time 2 h and CO₂/CH₄ feed ratio 1.0.; (b) products selectivity over TiO₂ and 2 wt% La/TiO₂ catalyst

3.3 Reaction mechanism

.. . .

.. .

The multi-step reaction pathway of the process splits into three parts: the formation of the CO_2 radical, CH_4 oxidation and formation of CO and hydrocarbons. The feasible reaction pathway for this process is given by reactions in Eqs(1) – (6) (Tahir et al., 2015).

$$TiO_2 \xrightarrow{\text{light irradiation}} e^- + h^+$$
 (1)

$$La^{3+} + 3e^{-} \longrightarrow La^{3+} / 3e^{-}$$

$$CO_2 + e^- \longrightarrow CO_2^- \xrightarrow{h^+, e^-} CO$$
 (3)

$$CH_4 + h^+ \longrightarrow \circ CH_3 + H^+ \tag{4}$$

$$\circ CH_3 + \circ CH_3 \longrightarrow C_2H_6 \tag{5}$$

$$C_2 H_6 + \circ CH_3 \longrightarrow C_3 H_8 + H^+$$
(6)

In the case of light irradiations, the photo-generated electrons and holes are produced over TiO₂ photocatalyst. Eqs(1) and (2) reveal photo-excited electron-hole pair production and their trapping by La-

metal, resulting in prolonged lifetime of charges to precede oxidation and reduction process. The holes are used for oxidation of CH₄ while electrons are consumed by CO₂ for its reduction as explained in Eqs(3) and (4). Reactions in Eqs(5) and (6) divulged production and hydrocarbons through utilisation of CH₃ radicals and electrons in multi-step process. It demonstrates some level of selectivity for C₂H₆ production. The schematic presentation for CO₂ and CH₄ conversion to CO and hydrocarbons over La-loaded TiO₂ is presented in Figure 4. In conclusion, the overall high photocatalytic activity of La loaded TiO₂ for selective hydrocarbons productions can be attributed to higher CO₂ adsorption with hindered charges recombination rate.

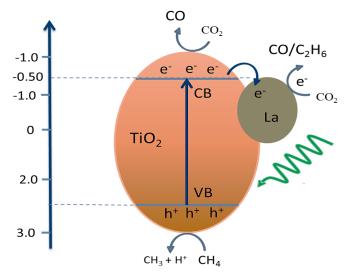


Figure 4: Schematic presentation of photocatalytic CO₂ reduction with CH₄ to CO and hydrocarbons over La-loaded TiO₂ photocatalyst.

4. Conclusions

La-loaded TiO₂ nanocatalysts were successfully synthesised for photocatalytic CO₂ reforming of CH₄. Experimental results revealed that CO₂ and CH₄ were efficiently converted to CO with appreciable amount of C₂H₆. The introduction of La into TiO₂ promotes the formation of C₂H₆ and CO as the main products. The maximum yield of C₂H₆ detected was 492.8 µmole/g-cat over 2 wt% La/TiO₂ catalyst at CO₂/CH₄ feed ratio 1.0 and irradiation time 2 h. The CO detected over La/TiO₂ catalyst was slightly decreased in 2 wt% La/TiO₂ catalyst than the amount produced over pure TiO₂ but gradually increased at higher La-loading. The significantly enhanced photoactivity of La/TiO₂ catalyst for hydrocarbons production is mainly attributed to higher adsorption of reactants and efficient separation of photo-generated electron-hole pairs. This development has confirmed that greenhouse gases (CO₂ and CH₄) can be efficiently converted to fuels using La/TiO₂ based photocatalytic system.

Acknowledgment

The financial support for this work was made available by the Ministry of Higher Education (MOHE) Malaysia through Nanomite Long Term Research Grant Scheme (LRGS) 4L839.

References

- Gonell F., Puga A.V., Julián-López B., García H., Corma A., 2016, Copper-doped titania photocatalysts for simultaneous reduction of CO₂ and production of H₂ from aqueous sulfide, Appl. Catal. B: Environ. 180, 263-270.
- Gusain R., Kumar P., Sharma O.P., Jain S.L., Khatri O.P., 2016, Reduced graphene oxide–CuO nanocomposites for photocatalytic conversion of CO₂ into methanol under visible light irradiation, Appl. Catal. B: Environ. 181, 352-362.
- He Z.Q., Tang J.T., Shen J., Chen J.M., Song S., 2016, Enhancement of photocatalytic reduction of CO₂ to CH₄ over TiO₂ nanosheets by modifying with sulfuric acid, Appl. Surf. Sci. 364, 416-427.
- Khalid N.R., Ahmed E., Hong Z., Ahmad M., 2012, Synthesis and photocatalytic properties of visible light responsive La/TiO₂ -graphene composites, Appl. Surf. Sci. 263, 254-259.

- Kong D., Tan J.Z.Y., Yang F., Zeng J.L., Zhang X.W., 2013, Electrodeposited Ag nanoparticles on TiO₂ nanorods for enhanced UV visible light photoreduction CO₂ to CH₄, Appl. Surf. Sci. 277, 105-110.
- Li M., Zhang L., Wu M., Du Y., Fan X., Wang M., Zhang L., Kong Q., Shi J., 2016, Mesostructured CeO2/g-C3N4 nanocomposites: Remarkably enhanced photocatalytic activity for CO₂ reduction by mutual component activations, Nano Energy 19, 145-155.
- Liu S.-Q., Zhou S.-S., Chen Z.-G., Liu C.-B., Chen F., Wu Z.-Y., 2016, An artificial photosynthesis system based on CeO₂ as light harvester and N-doped graphene Cu(II) complex as artificial metalloenzyme for CO₂ reduction to methanol fuel, Catal. Commun. 73, 7-11.
- Liu Y., Zhou S., Li J.M., Wang Y.J., Jiang G.Y., Zhao Z., Liu B., Gong X.Q., Duan A.J., Liu J., Wei Y.C., Zhang L.Q., 2015, Photocatalytic reduction of CO₂ with water vapor on surface La-modified TiO₂ nanoparticles with enhanced CH₄ selectivity, Appl. Catal. B: Environ. 168, 125-131.
- Mei B., Pougin A., Strunk J., 2013, Influence of photodeposited gold nanoparticles on the photocatalytic activity of titanate species in the reduction of CO₂ to hydrocarbons, J. Catal. 306, 184-189.
- Tahir M., Amin N.A.S., 2016, Performance analysis of nanostructured NiO–In₂O₃/TiO₂ catalyst for CO₂ photoreduction with H2 in a monolith photoreactor, Chem. Eng. J. 285, 635-649.
- Tahir M., Tahir B., Amin N.A.S., 2015, Photocatalytic CO₂ reduction by CH₄ over montmorillonite modified TiO₂ nanocomposites in a continuous monolith photoreactor, Mater. Res. Bull. 63, 13-23.
- Yang M.Q., Xu Y.J., 2016, Photocatalytic conversion of CO₂ over graphene-based composites: current status and future perspective, Nanoscale Horiz. 1 (3), 185-200.