
 CHEMICAL ENGINEERING TRANSACTIONS  
 

VOL. 50, 2016 

A publication of 

 

The Italian Association 
of Chemical Engineering 
Online at www.aidic.it/cet 

Guest Editors: Katharina Kohse-Höinghaus, Eliseo Ranzi
Copyright © 2016, AIDIC Servizi S.r.l., 
ISBN 978-88-95608-41-9; ISSN 2283-9216 

Modeling And Control of a Continuous Ethanol Fermentation 
Using a Mixture of Enzymatic Hydrolysate and Molasses from 

Sugarcane 

William E. Herreraa,b, Elmer C. Riveraa, Luz A. Alvareza, Laura P. Tovarb, 
Sebastian Tamayo Rojasb, Celina K. Yamakawab, Antonio Bonomia,b, Rubens 
Maciel Filhoa,b 
 

a Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais 
(CNPEM), Caixa Postal 6192, CEP 13083-970, Campinas, São Paulo, Brazil.  
b School of Chemical Engineering – University of Campinas (UNICAMP), CEP 13083-852 Campinas, SP, Brazil 
williamweha@hotmail.com 

 
In this work, a kinetic model considering the effect of temperature was employed to assess the dynamic 
behavior of an ethanol fermentation process. To calibrate the model, experimental data were obtained from 
batch cultures using cellulosic hydrolysate from sugarcane bagasse blended with sugarcane molasses at 75% 
and 25% in volume, respectively, as carbon sources. The kinetic model with its parameters is applied in the 
simulation of a continuous fermentation process for ethanol production. The system is a typical large-scale 
industrial process consisting of four fermenters attached in series and operated with cell recycling. Based on 
dynamic simulation of the process, a suitable Infinite-Horizon Model Predictive Control (IH-MPC) was applied 
to deal with the fluctuation of the sugar concentration in the raw material. The control objective is to maintain 
the outlet sugar concentration of the fourth reactor at a desired value, by manipulating the feed flow rate. This 
strategy was tested for both disturbance rejection (regulatory problem) and changes in the output reference 
(servo problem).  

1. Introduction 

In the current context of biofuels production, it is evident the need to improve the process efficiency towards 
higher productivity and lower production costs. The control strategy also plays an important role, especially 
due to the changes in the raw material quality. This is even enhanced when a mixture of cellulosic hydrolysate 
from sugarcane bagasse and sugarcane molasses are used as raw materials in an integrated first and 
second-generation (1G+2G) ethanol production process. 
An advantage of this integrated process is that the bagasse is already available at plant site. The 2G ethanol 
production may share part of the facilities where 1G ethanol production takes place (e.g. concentration, 
fermentation, distillation, among others) (Dias et al., 2012). However, the industrial implementation of the 
1G+2G ethanol production will demand a control strategy robust enough to handle fluctuations in the 
composition of the medium feed to the reactor. 
Recently, a few authors have studied the dynamic behavior of ethanol fermentation through modeling and 
simulation. Hydrolysates from sugarcane bagasse (Andrade et al., 2012, Kumar et al., 2015), woody biomass 
(Wang and Liu, 2014) and soybean meal (Luján-Rhenals et al., 2015) were used as raw materials. 
Nevertheless, suitable control strategies able to deal with disturbances related to these processes have not 
yet been reported. 
In this context, the aim of the present work was to employ mathematical modeling to analyze the dynamic 
behavior of a 1G+2G ethanol fermentation process. This allowed defining the best control strategy to deal with 
the fluctuations of the sugar concentration in the raw material. The control was designed to maintain the outlet 
sugar concentration at a desired value. The performance of an advanced controller, the Infinite-Horizon Model 
Predictive Control (IH-MPC) (Odloak, 2004) was assessed. 
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2. Process modeling 

The process modeling starts with the construction of a temperature-dependent kinetic model using batch 
fermentation cultures. Then, the kinetic model that provided the best fit to the experimental measures was 
used to simulate a continuous fermentation process for ethanol production. 

2.1 Batch culture  
Fermentation media and microorganism 
Four ethanol fermentations were performed in batch mode using a bioreactor Bioflo 115 of 1.5 L (New 
Brunswick, USA) at different temperatures (30, 32, 34 and 36 ºC) to calibrate the kinetic model. The 
microorganism used was Saccharomyces cerevisiae an un-named strain cultivated in the Development 
Bioprocess Laboratory at CTBE and originally obtained from the Faculty of Food Engineering/ State University 
of Campinas, originally sampled from an industrial ethanol distillery. The substrate was composed with 
sugarcane molasses and cellulosic hydrolysate from sugarcane bagasse.  The production of cellulosic 
hydrolysate consisted of acid pretreatment with 1.0 % (w/v), 20 % wt of solids and 90 min (Tovar et al., 2015). 
The solid fraction, cellulignin, was saccharified with 8% WIS using Cellic® CTec2 (Novozymes Latin America 
Ltda, Brazil) and β-glucosidase from Aspergillus niger (Sigma-Aldrich Corporation, USA). The enzymes 
complex load was 15 FPU / g substrate and 33 IU/g substrate. The final concentration of substrate in term of 
total sugars as inverted (TSAI) was 180 g/L.  
Analytical methods 
The cell concentration in dry basis was determined in triplicate by gravimetry. Samplesing of 1 mL were 
centrifuged, washed two times with Mili-Q water and dried at 80 °C until constant weight in the analytical 
balance. The determination of sugars (sucrose, glucose and fructose) was carried out by high-performance 
liquid chromatography (HPLC) using Agilent Infinity 1260 with IR detector at 50 °C, Aminex column HPX-87P 
300 mm x 7.8 mm at 60 °C and 0.5 mL/min of ultrapure Milli-Q water as eluent phase.  Ethanol, acetic acid 
and glycerol were determined through  Dionex Ultimate 3000 with IR detector Shodex RI-101, Aminex column 
HPX-87H 300 mm x 7.8 mm at 50 °C and 0.5 mL/min of 5 mM sulfur acid as eluent phase. 

2.2 Kinetic modeling  
The kinetic model comprises the reaction rates for cell growth, rx, substrate consumption, rs, and ethanol 
production, rp shown in Eqs. (1-3). Furthermore, the model considers the inhibition of cell growth by a high 
concentration of ethanol and substrate as well as by high concentration of cell. 
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In this study, six of the kinetic parameters, namely µmax, Ks, KI, r, Pmax and Xmax are modeled as function of 
temperature by using Eq. (4) while Yx/s and Yx/p are modeled using Eq. (5). A search procedure based on 
Genetic Algorithm PIKAIA (Charbonneau, 1995) is used to estimate the parameters. The least-squares 
criterion was used as the cost criterion to be minimized. 

(C/T)(BT)Aβ(T) ee=  (4) 

)(T)(Fe)3(ETDδ(T) ee=  (5) 

where T is temperature and A, B, C, D, E and F are constants to be adjusted for each temperature-dependent 
parameter. 
Table 2 shows the fitted values of the constants in Eqs. (4) and (5).  
The computed profiles of the cell, substrate and ethanol at 30, 32, 34 and 36 oC are shown by the solid curves 
in Fig. 1. The experimental measures (solid symbols) used for the estimation are also shown in this figure for 
comparison. For all cases, R2 ranged from 0.92 to 0.99. The Residual Standard Deviation (RSD) written as a 
percentage of the average of the experimental values (Rivera et al., 2007) was used as a more robust criterion 
to assess the goodness of fit. For all cases, RSD% ranged from 4.12 to 24.7 indicating an adequate 
adjustment of the model to the experimental measures. 
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Table 2:  Optimal values of the constants in Eqs. (4) and (5) 

Parameter  A B C D E F 
µmax 1.2819×105 -0.184967 -210.739752 - - - 
Ks 1.0775×1025 -0.804135 -934.340651 - - - 
KI 5.1410×1014 -0.438893 -493.199829 - - - 
r 75.04020 -0.064570 -75.519428 - - - 
Pmax 9.6879×104 -0.108010 -118.501614 - - - 
Xmax 2.8560×104 -0.125768 -61.096556 - - - 
Yx/s - - - 0.11039 -2.781227×10-5 8.966370×10-17 
Yx/p - - - 0.27453 -2.971048×10-5 1.061205×10-17 

 

 

Figure 1: Experimental measures (substrate (●), cell (□) and ethanol (♦)) compared with the performance of 
the model (⎯) at: (A) 30 oC; (B) 32 oC; (C) 34 oC and (D) 36 oC. 

2.3 Scale-up possibility for a continuous industrial process for ethanol production 
After the kinetic model has been fitted, it is used to simulate a continuous operation to assess the dynamic 
behavior of the ethanol fermentation process and to develop a suitable control strategy. The general scheme 
of the continuous fermentation process based on that proposed by Andrietta and Maugeri (1994) is illustrated 
in Fig. 2. The system is a typical large-scale industrial process composed of four fermenters arranged in series 
and operated with cell recycling. 
In this simulation study, a mixture of cellulosic hydrolysate from sugarcane bagasse and sugarcane molasses 
is converted into ethanol by a fermentation process carried out using the yeast Saccharomyces cerevisae. A 
set of centrifuges splits the outlet fermented medium into two phases. The light phase is sent to a distillation 
unit in which the ethanol is obtained. The heavy phase is submitted to an acid treatment and diluted with water 
before being recycled to the first fermenter. The reader is referred to Andrietta and Maugeri (1994) and 
Meleiro and Maciel (2000) for details on the mass and energy balance equations. 
During the dynamic simulation, the concentration of cell, substrate and ethanol in the fourth fermenter reached 
values of 31.95 kg/ m3, 0.46 kg/ m3 and 63.42 kg/ m3, respectively obtaining yield of 84%, with a productivity of 
7.7 kg/ m3h. For the simulation, optimized operating conditions were considered: feed flow rate = 100 m3/h, 
inlet substrate concentration = 180 kg/ m3, fermenter temperature = 33.5 oC, recycle rate = 0.3, and volume of 
the fermenters, V1 = 210.374 m3, V2 = 268.037 m3, V3 = 316.663 m3, V4 = 208.208 m3. The magnitude of 
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these values shows that the process is designed to produce ethanol on typical industrial distilleries in Brazil 
(Andrietta and Maugeri, 1994). 

 

Figure 2: General scheme of the continuous fermentation process 

3. Process Control 

One of the purposes of this work is to assess, through simulation, a control strategy. The proposed strategy 
consists in a Single Input - Single Output control system (SISO) where the sugar concentration in fourth 
fermenter, S4, must be maintained at a desired value by manipulating the feed flow rate, Fa. At this point, the 
following control notation must be introduced: y: controlled variable (S4), u: manipulated variable (Fa). The 
control configuration is shown in Fig. 2. An important consideration is that the levels and the temperatures in 
all four fermenters are perfectly controlled.  
The challenge of controlling a continuous industrial process for ethanol production is addressed by the use of 
a control algorithm called Infinite-Horizon Model Predictive Control (IH-MPC). Model Predictive Control refers 
to a class of control algorithm that utilize an explicit process model to predict the future response of a plant 
(Camacho and Bordons, 2004). MPC attempts to optimize the process behaviour by computing a sequence of 
future control actions. The main advantages of IH-MPC formulation are the following: the possibility to include 
process constraints in the control problem; properties such as feasibility, convergence and stability are 
assured (mathematical proofs). In practice, all those properties are revealed in a reliable closed-loop system, 
with a smooth operation. Furthermore, IH-MPC is a modern, practice and flexible control algorithm with a low 
computational load. Recent versions of this controller allow the integration with a Real Time Optimization 
(RTO) routine preserving the stability of the closed-loop system (Alvarez, 2012). 
The MPC formulation considered is based in the work of Odloak (2004). It presents an MPC that guarantees 
stability by setting the prediction horizon as infinite and including a terminal state constraint. The feasibility is 
assured by the incorporation of slack variables in the optimization problem of the MPC, softening the terminal 
state constraint. 
The prediction model was obtained using the System Identification Toolbox of Matlab®. At first, a continuous 
transfer function model was identified around the selected operating point: 

u(s)
1)1)(1.483s(1.475s

105.27
y(s)

-3

++
⋅=  (6) 

The linear model in Eq. (6) is presented in process units. It was obtained from data sampled at each 0.5 h. 
Moreover, the transfer function model was properly converted into a state-space model in discrete-time, in the 
incremental form as suggested in Odloak (2004). The state-space form is the suitable structure of the process 
model for the control algorithm implementation. 
The continuous industrial process for ethanol production was simulated in Matlab®. In order to test the 
performance and the capability of the control system to deal with disturbances, the sugar concentration in the 
feed stream S0 is introduced as a disturbance twice during the simulation. The servo problem is also 
considered. After the system is recovered from the disturbances, it is introduced a set-point change in S4. For 
this simulation, the set-point for S4 was defined as 0.5 kg/m3. As mentioned above, this controller considers a 
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single linear model for prediction. The initial conditions of the simulation are: S0 = 180 kg/m3, Fa = 100 m3/h. 
The process variables were scaled for the controller calculations so as to avoid numerical problems. The 
controller parameters are the output reference weight Q = 100, the control action weight R = 1, the control 
horizon m = 3. The sampling time of the controller is Ts = 0.5 h. The process constraints considered are 
∆umax=0.5, Famax = 250 m3/h, Famin = 50 m3/h, S4

SP= 0.5.  
First, at t=0 the process has to reach the steady-state, the value of S4 is initially 1.04 kg/m3. The controller 
deals with a servo problem. It brings the process output S4 to the set-point of 0.5 kg/m3 and it reaches the 
steady-state in 20h, approximately. Fig. 3 shows the manipulated variable Fa and controlled variable S4 along 
the simulation. The first disturbance occurs at time t=50 h with a sudden decrease of 20 kg/m3 in the substrate 
concentration of the feed S0. Hence, the new S0 is 160 kg/m3. This disturbance has a large effect on the 
controlled variable S4, as well as both on yield and productivity, as depicted in Figs. 3 and 4. The control 
system is able to bring the output S4 to the reference value by increasing largely the feed flow rate Fa to 148 
m3/h. 
After 100 hours of simulation, when the process has reached the steady-state, a second disturbance was 
introduced in the process. There was an abrupt increase from 160 kg/m3 to 190 kg/m3 in S0. In this case, the 
control system acts manipulating Fa to balance the sugar increase in the feed. The new value of Fa is lower 
than the last steady-state, Fa = 80.2 kg/m3. In this disturbance, the control action was effective and brings S4 
to the set-point. Another control system test was a change in the S4 set-point, i.e., the servo problem. The set-
point was increased from 0.5 kg/m3 to 0.8 kg/m3. Notice that the control system is able to follow this new 
reference. The feed flow rate is adjusted to the value 91.6 m3/h at steady-state. 
To finish the discussion, it is important to observe the behavior of the yield and the productivity along the 
simulation in Fig. 4. The final value of the process yield was around 0.84. The steady-state values of the yield 
remained almost constant during the simulation, exhibiting different values only during transient stages. This 
result indicates that controlling S4, in the scenarios considered in this work, the yield is maintained controlled 
indirectly. 
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Figure 3: Input and output of the simulation for the fermentation process in closed-loop. Set-point (- - -) 
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Figure 4: Yield and Productivity (kg/m3h) responses of the simulation for the fermentation process in closed-
loop. 
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On the other hand, the productivity is highly affected for the different events simulated. At the first steady-state 
it is equal to 7.85 kg/m3h, then after the first disturbance it reaches a higher value, 10.1 kg/m3h. This result is 
due to an increase in both S0 and Fa. The second disturbance also affects the productivity, reduced to 6.5 
kg/m3h. In this case, the change in the set-point (for the servo problem) increases productivity, reaching 7.4 
kg/m3h. Here, the new value of Fa had a more pronounced effect on productivity than the yield. 

4. Concluding Remarks 

The temperature-dependent kinetic model was suitable to describe the ethanol fermentation from a mixture of 
cellulosic hydrolysate from sugarcane bagasse and sugarcane molasses. With the use of a continuous model 
that considered the developed kinetic, it was possible to assess the dynamic behavior of the fermentation 
process for the production of ethanol. This analysis was necessary to design a suitable control strategy able to 
address disturbances related to the process as well as set-point changes. Disturbances in the inlet substrate 
concentration can affect significantly the ethanol productivity. On the other hand, the proposed control strategy 
was able to maintain the yield through the regulation of sugar concentration in the fourth fermenter. The 
development of suitable controllers in industrial-scale ethanol fermentation that uses cellulosic hydrolysate as 
raw material is required. It can be a valuable tool to make the integrated first and second-generation ethanol 
industry commercially viable. Further works should include the viable cell dynamics in the process model. 
Moreover, assessment of several control strategies to optimize the process operation is recommended. 
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