Identification of Major Accident Hazards in Industrial Biological Processes

Valeria Casson Moreno, Eleonora Giacomini, Valerio Cozzani*

LISES - Dipartimento di Ingegneria Civile, Chimica, Industriale e dei Materiali, Alma Mater Studiorum - Università di Bologna, Italy
valerio.cozzani@unibo.it

The present work focuses on process safety related to bioprocess engineering, meant as the integration between chemical engineering and biotechnology. A specific checklist has been created in order to perform a first step in bioprocesses hazard identification aimed at meeting not only personnel safety issues, but also process safety ones. The bioprocess of biogas production from anaerobic digestion of livestock slurry was taken as a case study to show the methodology.

1. Introduction

In recent years, industrial biological processes are increasingly used in the chemical industry, spacing from pharmaceutical to food or energy production. The increase in the number and potentiality of bioprocess facilities associated to the scale-up to industrial production, as well as to the industrial implementation of innovative processes and technologies, is generating an emerging risk (CCPS, 2011). Bioprocesses are often perceived as safer and having a lower impact than conventional chemical processes. However, recently several unexpected severe accidents were reported for biological processes, in particular in the energy sector (e.g. biogas production and biofuel processing in Casson Moreno and Cozzani, 2015; Rivière and Marlair, 2010). In particular, unexpected operating conditions in the biological process resulted in the formation and release of hazardous substances (Casson Moreno et al., 2015). Such scenarios were not considered in the safety assessment of the process, revealing some limitations of conventional hazard identification techniques for biological processes.

Our review of the state of the art in existing risk assessment methods shows that there are no specific techniques for hazard identification in bioprocesses, especially addressing process safety problems. Until now, specific checklists, hazard identification procedures and tools for biological processes focused mostly on personnel safety. On the other hand, conventional hazard identification techniques often may overlook the specific issues posed by biological reactions.

The present study shows preliminary results obtained in the identification of bioprocess hazards. A specific checklist, to screen the possible criticalities related to bioprocesses has been created; it has been tested and tuned on a real case study; a biogas production plant from anaerobic digestion of livestock slurry was analysed, giving interesting results and rising the issue about the need for a complete hazard identification methodology specific for the sector.

2. State of the art in bioprocess hazard identification

A bioprocess is a process that uses microorganisms, living cells or their components to obtain products or complete a chemical transformation. At present, the scientific community identifies the risk related to bioprocesses (the so-called biohazard or biological hazard) to the use of biohazardous materials, defined as infectious agents that present a risk, or potential risk, to the health of humans, animals or environment. The prevention of the exposure or accidental release of biohazardous materials is the task of the biosafety. With respect to conventional chemical engineering processes, biohazard is a new element specific of bioprocess
manufacturing sites (CCPS, 2011). However, as any other chemical process, bioprocesses have also traditional risks to manage, in addition to the specific ones.

Process safety management (PSMS) system is historically focused on the classical chemical industries (petroleum, natural gas, chemicals and polymers production). Recently also others production industries (such as pharmaceutical industries, Angel et al., 2015) profit of PSMS even if no regulations (but Seveso III in Europe) require it (CCPS, 2011). The European Directive 2000/54/CE (European Parliament, 2000) has the goal to protect workers from risks for their safety and their health from exposure to biological agents at work, including the prevention of such risks. The Directive applies to food industry, to agricultural and healthcare business, to all kind of laboratories, to wastewater treatment and waste management. On the basis of the Directive, many countries defined their own biological risk assessment methods (Bassett et al., 2012; Caskey et al., 2010; EPA, 2007; Giudici et al., 2011; HSE, 2013). There are just few studies in literature about the use of conventional methods for risk assessment (e.g. FMEA, HAZOP, bow-tie analysis) in bioprocesses (Harms et al., 2008; Mollah, 2005; Pietrangeli et al., 2013; Pinkenba and Statement, 2006). In particular, Pietrangeli et al. (2013) also concluded that biosafety is focused on individual protection only.

3. Bioprocess checklist

The creation of a checklist is the first step toward the creation of a full methodology aimed at hazard identification of bioprocesses. The checklist here proposed is designed to recognize the criticalities related to the bioprocess, the hazardous substances involved and on how they could be formed during the process itself; in addition to standard checklists, the possible presence of pathogen agents has been considered. The checklist was developed with the purpose of collecting as much information as possible on the bioprocess itself; this tool allowed us to make a first screening on the process parameters, on the substances and on all the conditions to monitor, becoming preparatory for future development of the methodology.

Our checklist is mainly focused on the hazardous substances, intended as chemical substances that can be toxic, flammable, but especially on pathogenic agents. In addition, particular attention was paid on the operating conditions that influence the formation of these substances (Canadian Society of Chemical Engineering, 2012).

The checklist is divided into two different sections: a process specification section (Engineering Process), and a more general section (General). The first section helps the identification of parameters that need a deeper analysis and of conditions to monitor; in the second section, some questions related to PHAs are proposed. The structure of the proposed checklist for bioprocess hazard identification is shown in Figure 1.

![Figure 1: Structure of the proposed checklist for bioprocess hazard identification.](image-url)
4. Results and discussion

An anaerobic digester for the production of biogas from livestock slurry have been taken as a case study. The choice was driven by the existing emerging risk in the sector of production of energy from renewable sources (Casson Moreno and Cozzani, 2015; Casson Moreno et al., 2015) and because the authors are familiar with the process and existing plant.

Biogas is a mixture of methane and carbon dioxide that can be produced by anaerobic digestion of different kind of wastes, deriving from agricultural, food or urban waste, sewage or manure and animal residuals. Usually, besides methane and carbon dioxide, others components are present in very small quantities, depending on the substrate used for the production (Scarponi et al., 2015). The most important substances from a process safety standpoint are hydrogen sulfide and ammonia; then there are traces of carbon monoxide, hydrogen, nitrogen, and oxygen.

The focus of our analysis is on the reactor (the so-called anaerobic digester), because it is the equipment where the production of biogas takes place and mainly where the microorganisms are. It is where toxic substances could be formed, so the analysis is limited to it and few connected equipment, fundamental for the normal operations. Due to the limited space available, the results are shown below with focus on the part of the checklist in which bio-aspects have been integrated in the Engineering Process section of the checklist (Figure 2 to Figure 5).

Designing and filling out the checklist raised the following issues:
- Deviation from normal operating conditions of specific parameters (such as flow, pressure, temperature, and composition of feed) can induce operability as well as safety problems. By changing the above mentioned conditions, microorganisms could die (creating an operability problem) or they could increase the production of toxic substances (safety problem).

Therefore, standard deviations induce consequences that are somehow new with respect to conventional chemical processes. The relationship cause-consequences, bio and not, needed a deeper investigation with a more sophisticated technique such as HAZOP. This will be a further development of the present work.
- A very detailed knowledge of the bioprocess is required.
- The method should be tuned and tested with bioprocesses involving microorganisms of risk group II, III and IV in order to prove the effectiveness of the dedicated Biohazard section of the checklist.

5. Conclusions

Industrial bioprocesses pose both conventional process hazards and those more specific related to the use of microorganisms (biohazard) or to the influence of microorganisms on process parameters.

The checklist created in the present work was aimed at highlighting the criticalities of the equipment under analysis and was built in order to be a screening tool that can be used in different types of bioprocesses. The main results of its application was stressing the fact that some process parameters play a significant role in the production of hazardous substances. This, in turn, revealed the need for a deeper analysis of the process and equipment involved.

Our future work will be focused on the development of a complete methodology for hazard identification in bioprocess. The basic idea behind it will designing a tool able to identify hazards related to a bioprocess, to perform a screening to select equipment that needed a more detailed analysis and to propose some protective and preventative measures. The checklist here presented will be the first step of it, allowing us to collect as much information as possible on the process, making a first screening on the process parameters, on the substances and on all the conditions to monitor, becoming an introduction to some more specific analysis such as HAZOP.
CHECKLIST for BioProcesses (A. SINGLE UNIT OPERATION)

<table>
<thead>
<tr>
<th>Engineering Process</th>
<th>Operability</th>
<th>Safety</th>
<th>Operability</th>
<th>Safety</th>
</tr>
</thead>
<tbody>
<tr>
<td>What is the equipment in analysis?</td>
<td>Digester</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>What are the substances present in main quantity?</td>
<td>CH₄, CO₂, H₂S, NH₃</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>What is the maximum quantity of substance processed?</td>
<td>1150 Nm³/day of biogas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>What is the frequency of use?</td>
<td>Continuously</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are any products hazardous from a toxic or fire standpoint?</td>
<td>Yes / No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Could their quantity introduce an additional hazard to the process?</td>
<td>Yes / No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are hazardous reactions possible due to mistakes or contaminations/impurities?</td>
<td>Yes / No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>What could be the other products of the reactions?</td>
<td>An higher production of H₂S and NH₃</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In which cases can be developed unwanted reactions?</td>
<td>Improper storage, impact or shock, contaminant materials, abnormal process conditions (e.g., temperature, pH), abnormal flow rates, missing ingredients or disproportioned reactants or catalysts, mechanical failure (e.g., pump trip, agitator trip), improper operation (e.g., started early, late, or out of sequence), sudden or gradual blockage or buildup in equipment, overheating residual material in equipment.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Which deviation of the following operating parameters can introduce a hazard/operability issue?</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow</td>
<td>Operability</td>
<td>Safety</td>
</tr>
<tr>
<td>Pressure</td>
<td>Operability</td>
<td>Safety</td>
</tr>
<tr>
<td>Temperature</td>
<td>Operability</td>
<td>Safety</td>
</tr>
<tr>
<td>Composition of feed</td>
<td>Operability</td>
<td>Safety</td>
</tr>
<tr>
<td>Time</td>
<td>Operability</td>
<td>Safety</td>
</tr>
<tr>
<td>pH</td>
<td>Operability</td>
<td>Safety</td>
</tr>
</tbody>
</table>

Is hazard possible from loss of utility?	Yes / No
Does the process work in sub atmospheric pressure?	Yes / No
Are the following present?	Relief systems, Flare systems, Vents, Drains, Other process equipment.
Are liquid seals protected against freezing?	Yes / No
Does the process work in or near the flammable range?	Yes / No
Can the process reach temperature lower than the ductilebrittle transition temperature?	Yes / No

Hazard classification of the substances:

- **Biohazardous substances:**
 - Unstable explosives, Explosives, divisions 1.1, 1.2, 3, 1.4
 - Self-reactive substances and mixtures, types A, B
 - Organic peroxides, types A, B
 - Flammable gases, category 1
 - Flammable aerosols, categories 1, 2, 3
 - Flammable liquids, categories 1, 2, 3
 - Flammable solids, categories 1, 2, 3
 - Self-reactive substances and mixtures, types B, C, D, E, F
 - Pyrophoric liquids, category 1
 - Pyrophoric solids, category 1
 - Self-heating substances and mixtures, categories 1, 2
 - Substances and mixtures, which in contact with water, emit flammable gases, categories 1, 2, 3
 - Organic peroxides, types B, C, D, E, F
 - Oxidizing gases, category 1
 - Oxidizing liquids, categories 1, 2, 3
 - Oxidizing solids, categories 1, 2, 3
 - Compressed gases, Liquefied gases, Refrigerated liquefied gases, Dissolved gases
 - Corrosive to metals, category 1
 - Acute toxicity (oral, dermal, inhalation), categories 1, 2, 3
 - Skin corrosion, categories 1A, 1B, 1C
 - Serious eye damage, category 1
 - Acute toxicity (oral, dermal, inhalation), category 4
 - Skin irritation, categories 2, 3
 - Eye irritation, category 2A
 - Skin sensitization, category 1
 - Specific target organ toxicity following single exposure, category 3
 - Respiratory tract irritation, category 2
 - Narcotic effects
 - Respiratory sensitization, category 1
 - Germ cell mutagenicity, categories 1A, 1B, 2
 - Carcinogenicity, categories 1A, 1B, 2
 - Reproductive toxicity, categories 1A, 1B, 2
 - Specific target organ toxicity following single exposure, categories 1, 2
 - Specific target organ toxicity following repeated exposure, categories 1, 2
 - Aspiration hazard, categories 1, 2
 - Acute hazards to the aquatic environment, category 1
 - Chronic hazards to the aquatic environment, categories 1, 2

Figure 2: Checklist for bioprocesses applied to the case of biogas production, Engineering Process section.
BIOHAZARD

Microorganism Involved
- What is the pathogen agent involved? examples: *Methanococcus, Desulfovibrio, Acetobacter*
- How and where much substrate is manually manage? Premixing tank
- What is the frequency of use? Continuously
- Consider only if the risk group is higher than 1
- What is the standard mode of transmission? Inhalation? Ingestion? Skin contact? Blood
- Is there a vaccination available? Yes? No
- Has the microorganism been incubated by a tested procedure during processing? Yes? No
- Is there known or suspected drug resistance of biological agent(s) to be used? Yes? No
- Are there any pre-existing medical issues that increase the risk associated with this biological agent(s), e.g., pregnancy, immunosuppression etc.? Yes? No
- Do agents attenuated or do they have increased pathogenicity during the process? Yes? No

Details of others who may be affected by the work activity, e.g. maintenance operators, cleaners...
- Are the required preventative and protective measures in place? Yes? No
- Are all equipment and work environment cleaned and disinfected after contact with potentially infectious materials when required? Yes? No
- What ability has the biological agent(s) to survive, e.g., resistance to chemical disinfection?
- In biohazardous areas: are all entrances properly labelled and restricted followed? Yes? No
- Are personnel instructed on the necessity to report immediately any release or event that might cause exposure to biohazard agents? Yes? No
- Are spill control system in place? Yes? No
- Do workers know how to decontaminate counters, spilled materials, equipment, etc.? Yes? No
- Are necessary control measures? (description)

TOXICITY & ECOTOXICITY

Toxic Substances
- What is the toxic/s present/s in the main quantity? H2S
- What is the frequency of use? Continuously
- What is the IDLH? 100 ppm

Other threshold limits
- TLV-C, TLV-STEL, TLV-TWA, PEL, LEL
- Other: ERPG-2: 30 ppm

How are potential health effects? Acute? Chronic?
- Is there evidence based on studies of animals or humans that the substance is one or more of the following? Yes? No
- Is a variant or mutation? Teratogen?
- How does this substance enter the body (routes of entry)? Inhalation? Skin contact? Ingestion? Eye contact
- Describe the hazards associated to the substance: list of diseases/symptoms of intoxication
- Emergency, caution, loss of consciousness
- Has the concentration of the substance in the workplace air been tested? Yes? No
- Is the operator exposed to other chemicals at the same time? Can they have a combined effect? Yes? No

Preventative & Protective Measures
- Are gas detector used? Yes? No
- Are all employees required to use personal protective equipment when handling chemicals? Yes? No
- Are eyewash fountains and safety showers present in the working area? Yes? No
- Are operators included in a medical surveillance program appropriate for the types of chemicals to which they are exposed? Yes? No
- Do the operators have any medical conditions or take any drugs that might interact with chemicals? Yes? No
- Is a medical test recommended? If so, list. Yes? No
- Are operators trained in the use of first aid procedures? Yes? No

Ecotoxicity
- Are the substances aquatic? Terrestrial? Persistent? Biodegradable?
- Is the substance potentially bio accumulative? Yes? No
- Is mobility in soil possible? Yes? No
- Is any other adverse effects known? If so, list them. Yes? No

Figure 3: Checklist for bioprocesses applied to the case of biogas production, Biohazard section.

Figure 4: Checklist for bioprocesses applied to the case of biogas production, Toxicity and Ecotoxicity section.
Reference

HSE, 2013. An update on HSE’s work to consolidate legislation on human pathogens, animal pathogens and genetically modified organisms following the Callaghan and Löfstedt Reviews [WWW Document].

