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Growing energy needs and increasing environmental issues are creating awareness for alternative energy 

which substitutes the non-renewable and polluting fossil fuels. Biomass is a good feedstock for biochar 

production through the pyrolysis process. There is potential to generate solid fuel from biomass, as there 

are large quantities of agricultural wastes available in Malaysia. This paper outlines the experimental study 

on the pyrolysis of durian rinds in Thermogravimetric Analyzer (TGA). The effects of temperatures on the 

yield of biochar from the durian rinds were investigated. Increasing temperature resulted in increasing 

weight loss of the biomass sample. The total weight loss at the end of 920 ºC was 86.9 %. This 

corresponds to the loss of water and volatile matter from the durian rinds. A multilayer feed-forward neural 

network (FANN) model was trained with an error back-propagation algorithm. Reaction time, temperature 

were used as the input parameters and weight loss was the output for the study. A FANN model with 

modeling performance of 2-20-1 was obtained for the study. 

1. Introduction 

Energy has become very important for industrial and social development. Life without electricity would be 

imaginary for most of modern mankind. The demand for energy increases dramatically as the population 

increases (Lee et al., 2007). Energy is largely consumed in the industry, where production is being carried 

out 24 h/d for 7 days a week. According to the World Energy Council, about 82 % of the world’s energy 

needs are currently covered by fossil resources such as petroleum, natural gas and coal (Soetaert and 

Vandamme, 2005). But the depletion of the world’s oil reserves has raised awareness on the importance 

of renewable energy (IEA, 2008). Fossil fuel combustion products are causing global problems, such as 

global warming, acid rains and urban air pollution (Nejat Veziroǧlu and Şahin, 2008). 

In recent years, power generation not only depended on coal, petroleum and natural gas, but also on 

some contributions from hydro, wind, solar and biomass. One renewable option is utilizing waste to 

generate energy.  Biomass looks like a promising alternative to produce biofuels. Biofuels are considered 

to be carbon cycle neutral because CO2 released into the atmosphere when burnt is fixed in the biomass 

by photosynthesis (Choi et al., 2014). Thus, it will have none or very small net carbon dioxide impact to the 

global warming compared to fossil fuels (Koroneos et al., 2008). Biomass is a complex resource that can 

be processed through biological routes that convert the carbohydrate portion of the lignocellulose into 

ethanol or thermochemical processes that generate char, liquid, syngas (Goyal et al., 2008) and clean 

conventional fuels (Chum and Overend, 2001). 

Biomass wastes from the agriculture are well known for their wide availability, high moisture content and 

short shelf-life. They are considered low grade fuels compared to petroleum or coal. Nevertheless they can 

be upgraded by applying thermo-chemical treatment such as liquefaction (Wang et al., 2008,), pyrolysis 

and gasification (Wei et al., 2006). Biomass can be categorized as “young coal”. As coal takes millions of 

years to form, biomass is readily available in the form of agricultural wastes. Biomass has similar 

mechanism with coal when it is pyrolised or gasified. Figure 1 illustrates the thermal conversion of 

biomass. 
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Figure 1: Schematic diagram of thermal conversion process (Swaaij et al., 2002) 

Pyrolysis is known as thermo-chemical decomposition of solid or liquid feedstocks. Chemical 

decomposition of organic materials occurs when heat is introduced in the absence of oxygen (Saxena et 

al., 2008). Pyrolysis generally produces char, oil/tar and syngas, which consist of CH4, H2, CO, CO2 and 

also H2O. In addition, pyrolysis of plant-derived biomass can also be taken as the decomposition of 

cellulose, hemi-cellulose and lignin. Therefore, pyrolysis can be applied to upgrade low grade fuels like 

biomass into combustible gases and char.  

Pyrolysis processes can be categorized into slow pyrolysis, fast pyrolysis and flash pyrolysis. Among the 

processes, slow pyrolysis is normally chosen to obtain maximum char yield. Both, fast and flash pyrolysis, 

produce more bio-oil and syngas and result in lower yields of char from the rapid decomposition of 

cellulose, hemi-cellulose and lignin. The main operating parameters for all three pyrolysis process are 

shown in Table 1. 

Table 1:  Range of main operating parameters for pyrolysis process (Maschio et al., 1992) 

 Slow pyrolysis Fast pyrolysis Flash pyrolysis 

Operating Temperature (ºC) 300-700 600-1,000 800-1,000 
Heating Rate (ºC/s) 0.1-1 10-200 ≥ 1,000 
Solid residence time (s) 600-6,000 0.5-5 < 0.5 
Particle size (mm) 5-50 <1 Dust 

 

Therefore, this paper describes the pyrolysis process adopted to produce biochar by adopting biomass as 

the feedstock. The objective of this paper was to develop a Feedforward Neural Network (FANN) model to 

predict the weight loss in the production of biochar at various temperatures and time period. 

2. Materials and method 

Durian rinds were chosen as the biomass for the pyrolysis process. Malaysia is one of the primary 

producers of durian. Total planted area was 116,280 ha and the production reached 303,717 t in 2003 

(MARDI, 2003). For durian aril, the edible portion of the fruit accounts for only 15-30 % of the mass of the 

entire fruit. Thus, around 70 % of the total mass of the fruit, which includes the seed and the rinds are 

being discarded as wastes. As a large portion of the durian rinds are readily available as wastes, the 

durian rinds were chosen for the pyrolysis process. The samples of durian rinds were obtained from 

hypermarket in Balakong. As received durian rinds have high water content of around 80 %wt. As an initial 

step, the material was cut into smaller pieces ± 2 x 7 cm. Then the durian rinds were oven dried for 24 h at 

70 ºC to reduce their moisture content to air-dried moisture content of around 10 %wt. After drying, the 

durian rinds were ground using a grinder Retsch model SM100 to a particle size of ≤ 5 mm. The samples 

were then sieved using sieves and a sieve shaker. Sieve sizes of 2 mm and 1 mm were used to segregate 
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the samples. The samples fraction retained on the 1 mm sieve was used for the pyrolysis process. A 

thermogravimetric analyzer (Mettler Toledo, model TGA/DSC 1) had been used to carry out pyrolysis 

process. A slow pyrolysis adopted to obtain more char yield. 50 mg of durian rind sample was used and 

heated under nitrogen flow at 50 mL min
-1

 from room temperature to 920 ºC at a heating rate of 5 ºC min
-1

. 

To obtain a higher char yield, a slow heating rate was used. Pyrolysis process need an inert environment, 

thus nitrogen was introduced. The weight loss corresponding to temperature was recorded every 2 

minutes. 

3. Feedforward Neural Network (FANN) Modelling  

Artificial Neural Networks (ANN) technology offers an alternative method for the generation of process 

models. The advantages of using Artificial Neural Networks to represent a system are its ability to perform 

a nonlinear mapping between inputs and outputs and the necessity of requiring minimal prior knowledge of 

the system. ANN can learn complex functional relations by generalizing from a limited amount of training 

data. Hence, they can serve as black-box models of nonlinear, multivariable static and dynamic systems. 

They can be trained by input–output data observed on the system. The purpose of developing a 

Feedforward Neural Network (FANN) model was to predict the weight loss in the production of biochar at 

various temperatures and time periods. 

In this study, networks with fixed identical structure were developed and trained by the Levenberg-

Marquardt optimisation algorithm. Feed forward neural networks with two hidden layer was used. All 

simulation works were carried out using Matlab
TM

R2012. In order to determine the number of hidden 

nodes in the hidden layer, neural networks with different numbers of hidden neurons were trained on the 

training data and tested on the testing data. The network with the lowest Sum Square Error (SSE) on the 

testing data was considered as having the best network topology. In assessing the developed models, 

Mean Square Error (MSE) and ‘r’ value on the unseen validation data was used as the performance 

criterion. The static models for neural network development are shown below in Eq(1): 

 
Y(t)  = fn [ u1(t) u2(t)]            (1) 

where 
Y(t)  = Weight Loss  
u1(t) = Temperature 
u2(t) = Time 

4. Results and Discussion  

4.1 Weight loss prediction using Feed Forward Neural Network (FANN) 
 

 

Figure 2: Scaled experimental data for biomass pyrolysis process 

Figure 2 is the plot representing the scaled input and the output experimental data for the pyrolysis study. 

Time and temperatures were the inputs and the weight loss was the desired output.  All the experimental 

data which includes the training, testing and validation data were normalized. This plot was obtained by 

finding the minimum and maximum of the data, and then for each data point, subtracting the minimum and 
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divide by (max-min). 'zscore' function in MATLAB

TM
 was used to perform the first type of scaling (zero 

mean, unit variance). From the plot it is clear that for each parameter, namely time and temperature are 

increasing and the weight loss is decreasing.  

 

 

Figure 3: Variation of number of hidden nodes in hidden layers from training and testing data 

Figure 3 shows Mean Sum Squared Error (MSSE) for the variation of number of hidden nodes in the 

hidden layer. MSSE was obtained from sum of the squared error between the predicted result from the 

FANN model and the actual experimental result. Rule of thumb is that FANN model is normally assessed 

by the training and testing data. The performance of the whole model was seen in the results reflected by 

MSSE and correlation coefficient, ‘r’ value. Therefore, in this case study, the number of hidden neuron 

used in the FANN models was 20. Modelling was carried out based on trial and error of the number of 

hidden layers. It was found that when the number of hidden neuron was 20, where the best performance 

was obtained in terms of MSE and r values. Lowest average mean square error (MSE) and correlation 

coefficient, ‘r’ close to 1 was chosen as the optimum model. The optimum networks for Multi Input Single 

Output (MISO) model resulted to 2 input nodes, 20 hidden nodes and 1 output nodes [2-20-1]. The 

computational cost (or) the computational time can be referred as the time taken for the neuron to 

complete its training. The increase in computational time is due to the increase in the number of hidden 

neurons but its helps in achieving the accuracy. 
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Figure 4: Plot comparing the predicted output with the actual output for pyrolysis study for combined data 

of training, testing and validation 

Figure 4 shows the plot comparing the predicted output with the actual output in pyrolysis study which 

reveals the scaled weight loss for the biomass sample. The plot shows that the experimental data and the 
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predicted data of combined data of training, testing and validation, match almost close to each other. The 

plot represents that the actual and predicted data are much synchronized. The plots are seen to be 

overlapping because of their similarity and it is a sign of an excellent representation of the process. These 

trends were supported by the ‘r’ value on Table 2. SSE, MSE and ‘r’ values are the renowned method of 

assessment for neural network model. The values of the above mentioned parameters can be seen in the 

Table 2. 

Table 2:  Correlation Coefficient Value and MSE for pyrolysis study 

Data FANN (pyrolysis  study) 

 Correlation Coefficient, r MSE 

Training 0.999 0.0206 
Testing 0.999 0.0083 

Validation 0.999 0.0241 
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Figure 5: Residue plot for the model for pyrolysis study for combined data of training, testing and validation  

Figure 5 indicates the residue plot which is the difference between the actual and predicted data for the 

biomass pyrolysis study. The model residue is the method to portray the discrepancies between actual and 

predicted data for validation process. As can be seen in Figure 5, the discrepancies between the actual 

and predicted data are very small. 

5. Conclusions 

In this paper the effects of temperature and reaction time on the biochar yield was investigated. Increasing 

temperature resulted in increasing weight loss of the biomass sample. The total weight loss at the end of 

920 ºC was 86.9 %. With increasing temperature, char yield decreased as the weight loss is higher 

primarily due to the initial large amount of volatiles that can be easily released. As the pyrolysis proceeded, 

the gas generated reduces the mass of the remaining biochar and also reduced the volatile matter of the 

biomass. Lower temperature of 300 to 500 ºC was desired for maximum biochar yield. FANN model with 

experimental input data namely reaction time, reaction temperature and output data weight loss was 

developed. The results of FANN predicted weight loss versus the experimental output were plotted. The 

results showed that a 2-20-1 gave best performance. 
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