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The paper investigates a predictive control algorithm to regulate the output petroleum temperature of the 

tubular heat exchanger. In the controller design, a Takagi–Sugeno fuzzy model is applied in combination 

with the model predictive control algorithm. The process model in form of the Takagi–Sugeno fuzzy model 

is obtained via subtractive clustering from the plant's data set. The neural network is used to predict the 

system outputs and trained on the fuzzy model by the Levenberg-Marquardt algorithm. The simulation 

results show that the proposed control strategy has good set-point tracking and adequate disturbance 

rejection ability. 

1. Introduction 

Predictive control is an advanced control strategy which attracts interest of most of the industries. The 

model predictive control (MPC) scheme is based on the use of a process model and process 

measurements to generate values for process input as a solution of an optimisation problem. MPC has 

found a wide range of industrial applications, showing good performance and a certain degree of 

robustness (Keshavarz et al., 2010). There have been a number of contributions in the field of model-

based predictive control dealing with issues like stability, efficient computation, optimisation, constraints, 

and others. Vozák and Veselý (2014) present a stable predictive controller design based on solving a 

linear matrix inequality. Moon (2015) suggested an indoor temperature control method that can provide a 

comfortable thermal environment through the integrated control of the cooling system and the surface 

openings. In Santos et al. (2013) an application of artificial neural networks to the identification of a 

polymerisation system was presented. 

The modelling and control of fuzzy systems is a very active research area. Takagi-Sugeno (TS) fuzzy 

models were first proposed by Takagi and Sugeno (1985). Tanaka and Wang (2001) proved that any 

smooth nonlinear control system can be approximated by a TS fuzzy model with linear rule consequence 

as a set of flat linear segments. In Bello et al. (2014), a fuzzy model predictive control strategy is proposed 

to regulate the output variables of a coagulation chemical dosing unit. In Zhang et al. (2009), the robust 

stability of a networked control system via a fuzzy estimator is studied, where the controlled plant is a class 

of nonlinear systems with external disturbances, which can be represented by a Takagi–Sugeno fuzzy 

model. The fuzzy logic controller for an unstable bioprocess was designed and used for controlling the 

biomass concentration in Galluzzo and Cirino (2013). In Liew et al. (2013), fuzzy optimisation was applied 

as the multiple objectives optimisation approach to determine the most sustainable biodiesel production 

pathway screening. Abu-Siada and Hmood (2013) introduced a fuzzy logic approach for standardising 

dissolved gas analysis interpretation techniques. A fuzzy logic model was obtained to predict the 

recoveries of copper and iron from a chalcopyrite copper concentrate by conventional and electrochemical 

bioleaching processes in Ahmadi and Hosseini (2015). In Mendes et al. (2014) a new method for 

automatic extracting all fuzzy parameters of a fuzzy logic controller in order to control nonlinear industrial 

processes is proposed.  

http://www.sciencedirect.com/science/article/pii/S2314717214000233
http://www.sciencedirect.com/science/article/pii/S2314717214000233
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2. Process description 

Based on the previous work (Vasičkaninová et al., 2011) consider a co-current tubular heat exchanger, 

where petroleum is heated by hot water through a copper tube (Figure 1).  

 

 

Figure 1: Scheme of the tubular heat exchanger. 

The controlled variable is the outlet petroleum temperature T1out. Among the input variables, the hot water 

flow rate q3(t) is selected as the control variable. The mathematical model of the heat exchanger is derived 

under some simplifying assumptions and parameters and steady-state inputs of the heat exchanger are 

given in (Vasičkaninová and Bakošová, 2012).  

3. Fuzzy modelling based on subtractive clustering 

Subtractive clustering method is a method which extracts rules from supplied input-output training data. 

The idea of fuzzy clustering is to divide the data space into fuzzy clusters, each representing one specific 

part of the system behaviour. After projecting the clusters onto the input space, the antecedent parts of the 

fuzzy rules can be found. The consequent parts of the rules can be simple functions. One cluster 

corresponds to one rule of the TS model (Kim et al., 2005). 
Let us consider a collection of n data points {x1, x2, ..., xn} in an M dimensional space. Each data point is a 

candidate for cluster center. The density measure at data point xi is defined as 











2

1

jk

N

=j

k xxαxpe=P  (1) 

with 
2)( ar

=


 . kP is the new potential-value of each examined point, is the weight between i-data to j-

data, x is the data point, is a variable (commonly set 4) and ra is a cluster radius that is a positive 

constant representing the radius of data neighbourhood. 

A data point will have a high density value if it has many neighbouring data points. The first cluster center 

xc1 is chosen as the point having the largest density value Pc1. Then the density measure of each data 

point xi is revised as follows: 
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 , ηr=r ab  and rb is a positive constant which defines a neighbourhood that has 

measurable reductions in density measure. Therefore, the data points near the first cluster center xc1 will 

have significantly reduced density measure. Pc1  is the new potential-value data as cluster centre, is the 

weight of i-data to cluster centre, is the quash factor, usually set 1.5, ri is the distance between cluster 

centre.  
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When the potential of all data points have been revised according to Eq.(2), the data point with highest 

remaining potential is selected as the second cluster center. We reduce further the potential of each data 

point according to their distance to the second cluster center. The process is repeated until the potential of 

the points reaches the stopping criterion 1ck PP  , where  is the reject ratio, usually set 0.15. 

The Takagi-Sugeno fuzzy system is an efficient method to produce a model from a given input-output data 

set (Tagaki and Sugeno, 1985). This model contains if-then rules and in our described approach the 

following fuzzy rules were used 

R
i
: if y(t-1) is iM1 and u(t-1) is iM2 then   iii rtuqtyp=ty  )1()1(  (3) 

where R
i
 (i = 1, ...,7) denotes the ith rule, iM j are fuzzy sets, y is the output, u is the input, t is the discrete 

time,  pi, qi, ri, are consequent parameters. 

The symmetric Gaussian function is used for fuzzification of inputs and it depends on two parameters  

and c as it is seen in Eq.(4) 
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The parameters  and c for Gaussian membership functions are listed in the Table 1 and Table 2. Rule 

viewer that simulates the entire fuzzy inference process is shown in Figure 2. 

 

 
Figure 2: Fuzzy inference system 

Table 1: Parameters of the Gaussian 

membership functions for the first input 

 

Table 2: Parameters of the Gaussian 

membership functions for the second input 

i ci  i ci 

0.387 40.43  2.28 × 10
-5

 2.45 × 10
-4

 

0.387 40.43  2.28 × 10
-5

 1.55 × 10
-4

 

0.387 40.43  2.28 × 10
-5

 3.11 × 10
-4

 

0.387 40.36  2.28 × 10
-5

 2.00 × 10
-4

 

0.387 40.31  2.28 × 10
-5

 3.58 × 10
-4

 

0.387 39.88  2.28 × 10
-5

 2.86 × 10
-4

 

0.387 39.88  2.28 × 10
-5

 1.18 × 10
-4

 

4. Neural network predictive control of the heat exchanger 

Generally, the model predictive control problem is presented as on-line solving a finite horizon optimal 

control problem subject to system dynamics and constraints (Figure 3).  
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The nonlinear model predictive controller determines the control actions by solving an on-line optimisation 

problem which is minimising the following cost function  
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where Nu is the control horizon, Nmin and Nmax are the minimum and maximum prediction horizons, yr is the 

reference trajectory, yp is the predicted controlled output, determines the contribution that the sum of the 

squares of the control increments has on the performance index, u is the sequence of the future control 

increments that have to be calculated. The cost function is minimised in order to obtain the optimum 

control input that is applied to the non-linear plant. The control input u may be constrained: 

umin  ≤ (k+j) ≤ umax; j = 1, 2, …, Nu. The length of the control horizon Nu must satisfy following constraints: 

0 < Nu ≤ Numax. The value of Numax should cover the important part of the step response curve. The output 

sequence of the optimal controller is obtained over the prediction horizon by minimising the cost function J 

with respect to the vector of control inputs. The reference trajectory is assumed to be known. If it is not the 

case, several approaches are possible. When the future output of the plant in predictive control strategy is 

predicted using neural network plant model, the neural network predictive control (NNPC) is established.  

 

 

Figure 3: Model-based predictive control scheme. 

The training data were obtained from the controlled process with the sampling interval 1 s. 1,200 training 

samples were used for the neural network training. The NN model was trained off line. The results of 

training are shown in Figure 4 for the training data and in Figure 5 for the validation data. The prediction 

error was sufficiently small and the process output and the NN model output fitted well. It is possible to 

state that the NN training was successful. The information and parameters for NNPC of the described heat 

exchanger were: the minimisation routine: csrchbac; the number of neurons in the hidden layer of the plant 

model network: 6; prediction and control horizons: Nmin = 1, Nmax = 13, Nu = 3; the weight coefficients in the 

cost function (5),  = 0.05; the parameter for the reference trajectory calculation:   0.00012; the control 

input constraints: 0 ≤ q3in ≤ 3.5 × 10
-4

 m
3 
s

-1
; the control output constraints: 36.6 ≤ T1out ≤ 41 °C. 

Simulation results obtained using designed fuzzy neural network predictive control (FNNPC) in the task of 

set point tracking and in the task of disturbance rejection are shown in Figure 6. Disturbances were 

represented by petroleum flow rates changes +30 % at 150 s, -20 % at 450 s, +10 % at 750 s. The results 

are compared with two PID controllers (Vasičkaninová and Bakošová, 2014). The PID controller 

parameters obtained using the Cohen-Coon formulas are kp = 1.19 10
-4

, ti = 35.44 s, td = 4.55 s and 

those obtained using the Strejc formulas are kp = 4.3210
-5

, ti = 48.1 s, td = 12.64 s (Vasičkaninová and 

Bakošová, 2014). The simulation results were compared also using integral criteria IAE (integrated 

absolute error). The results for different performance measures are compared in Table 3. The control 

response obtained by the FNNPC has the smallest values of IAE. 

Table 3: Values of IAE  

controller IAE  

FNNPC 

Cohen-Coon PID controller 

Strejc PID controller 

128 

134 

248 
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5. Conclusions 

In this paper, a fuzzy model neural network predictive control approach of a tubular heat exchanger was 

presented. The Takagi-Sugeno modelling methodology was used to generate a fuzzy convolution model of 

the heat exchanger. The neural network was used to predict the system outputs and trained on the fuzzy 

model by the Levenberg-Marquardt algorithm. The simulation results showed that the proposed control 

strategy has good set-point tracking and adequate disturbance rejection ability. 

 

 

Figure 4: Training data for NN model. 

 

Figure 5: Validation data for NN model. 

 

Figure 6: The outlet petroleum temperature control. 
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