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Inline computed tomography (CT) based food inspection requires a fast image reconstruction method. Filtered
back projection (FBPF) meets this requirement, but relies on many high quality X-ray radiographs, which are
often not available in a conveyor belt acquisition geometry. On the cther hand, iterative reconstruction
methods may yield high quality images even with a small number of radiographs, but are orders of magnitude
slower. Recently, a neural network FBP (NN-FBP) method was proposed for parallel beam data that proved to
be fast and lead to high quality images. (Pelt et al. 2013a)

In this work, we present an NN-FBPF based CT reconstruction method for inline inspection. Using neural
networks, the method computes application specific filters for a Hilbert transform FBP (hFBP) based
reconstruction. Results from the proposed neural network based hFBP (NN-hFBP) method on fan beam X-ray
radiographs of apples show that, compared to conventional reconstruction methods, NN-hFBP generates
images of high quality in a short reconstruction time.

1. Introduction

Delivering high quality fruits to the consumer is an important and challenging goal in the fruit industry. For
apples, the quality can be affected by internal browning. This browning often results from COz injury during
storage. If the location of the browning can be detected, a difference can be made between severe browning
injuries inside and browning because of dents at the outside of the apple. The fruit industry relies on
evaluation methods like X-ray imaging (Herremans et al. 2013), MRI (Herremans et al. 2014) and NIR
absorption spectroscopy (Clark et al. 2003) to detect defects in fruit. If fast detection is required for a high
number of apples, a conveyor belt setup is commonly used. In this case, X-ray imaging is most suited for
imaging. However, obtaining fast and high quality reconstructions of fruit moving on a conveyor belt is a real
challenge for X-ray tomography. Currently, two X-ray based methods are used in an inline inspection process:
radiography and computed tomography.
A radiograph is a two-dimensional X-ray projection. It can be acquired very fast and the infrastructure is
relatively inexpensive. On a radiograph, regions with high and low densities can be distinguished, allowing to
detect for example pits in cherries (Haff et al. 2013). Unfortunately, radiography does not provide depth
information about the object. Hence, it cannot be used for applications where depth localisation is critical. In
computed tomography (CT), different projections are taken from a large number of angles around the object.
Based on these projection data, an adequate reconstruction of the inside of the fruit can be made. The
technique is however expensive, slow and therefore less suited for implementation in an inline environment.
To benefit from the advantages of both radiography and CT, one can exploit projection data from different
projection angles by taking multiple radiographs with a fixed source/detector system.

This vyields a fast and comparatively
inexpensive acquisition method that is easily implementable and at the same time provides depth information.
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Different methods exist to reconstruct the interior of objects to be scanned. They can be divided into two
groups: analytical reconstruction methods and iterative reconstruction methods.

Filtered Back Projection (FBP) is the most common method among the analytical reconstruction methods. The
reconstruction is based on the discretization of the continuous inverse of the Radon transform. The main
advantage is that the reconstruction is very fast. On the other hand, FBP assumes projection data from a
continuous range of projection angles over 180 degrees. Discretizing this range reduces the available
information and therefore the method only works well if a large number of projection angles is available over
the whole angular range.

Iterative reconstruction techniques provide a discrete representation of the problem. By iteratively solving a set
of linear equations, the optimal reconstruction is achieved. Common examples are ART, SART (Kak and
Slaney 2001), SIRT (Gregor and Benson 2008) and DART (Batenburg and Sijbers 2011). These methods can
often obtain better reconstructions for limited data problems at the expense of a longer reconstruction time.
Recently, the neural network FBP (Pelt et al. 20133, Pelt and Batenburg 2013b) was introduced. The method
combines different FBP reconstructions to obtain a final reconstruction image. The different FBP
reconstructions are performed with a specific filter for every FBP. These filters are trained in an artificial neural
network, after which an NN-FBP reconstruction is computed from a weighted sum of different FBP
reconstructions. The method has the advantage of speed from the FBP but at the same time provides
adequate reconstructions for a limited number of projection angles.

In this paper, we propose the NN-FBP reconstruction approach for a conveyor belt acquisition geometry and
apply it to the reconstruction of apples. The specific geometry introduces non-equiangular sampling of the
projection directions. The Hilbert Transform based FBP method (You and Zeng 2007) is used to perform the
Filtered Back Projections for a fan-beam geometry with the NN-FBP approach (NN-hFBP). Despite the
geametry limitations, the NN-hFBP is applicable for semi-inline reconstructions.

2. Methods

In this section, the method used for reconstruction of fruit moving on a conveyor belt is described. In section 2,
we will discuss artificial neural networks (section 2.1) and the Hilbert transform based Filtered Back Projection
(section 2.2), which are necessary to understand the NN-hFBP method described in section 2.3.

2.1 Artificial Neural Networks

An artificial neural network is a network consisting of different nodes and connections between these nodes
that are used to project a number of inputs onto a number of outputs. It can be seen as an evaluator of an
unknown function f:R" — R™. The type of network we use for the neural network FBP is a multilayer
perceptron. This is a network consisting of three layers: a layer with n input nodes, a layer with Alx hidden
nodes and a layer with m output nodes (Figure 1). Every input node is connected to every hidden node with a
weight w and every hidden node is connected to every output node with a weight g. A bias b is subtracted
from every weighted sum of all input nodes and from the weighted sum of all hidden nodes. Furthermore, a
nonlinear activation function is applied on every hidden node on and output node ao. In this paper, we will use
the same activation function for the hidden and output nodes: &= gy = &,. Due to this nonlinear activation
function, the network becomes nonlinear and can also describe nonlinear functions. The bias present in the
network is used to alter the position of the decision boundary provided by the activation function.

In this application we set the number of output nodes fixed to one because the network will be used to
reconstruct one pixel from the reconstruction image. The output of a multilayer perceptron o with input vector z
can then be described by Eq.(1). Ve use the sigmoid function as activation function.

Ow,apb,(Z) = 0(ZX qio(wi-z— b)) — by) (1)

Totrain the network, one needs a dataset with input data and the corresponding correct output data. The
network is then trained by minimizing the squared error between the network output and the correct output.

Figure 1: A multilayer perceptron with 2N input nodes, Nh hidden nodes and one output node
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2.2 Filtered Back Projection

Filtered Back Projection is a reconstruction method where the image is formed by discretization of a
continuous reconstruction problem. One way of reconstruction with fan beam data is by rebinning the fan-
beam data into parallel beam data and then applying a filter and the inverse Radon Transform. However for
the neural network application, we use the Hilbert Transform Based FBP algorithm (hFBP) (You and Zeng
2007). This method has, as the conventional FBP, position independent weights and allows rebinning of the
projection data, not only in a circular scanning environment but also in an inline environment.

Furthermore, in conventional FBP, the ramp filter infroduces approximations by the non-uniform cutoff
frequency. This disadvantage is removed by using the Hilbert Transform. The reconstruction algorithm
consists of several steps. First, the discrete Hilbert transform of the projection data is calculated (You et al.
2005). The discretization of this transform is shown in Eq.(2) for a scanning geometry with a source and a flat
panel detector.
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In Eq.(2), v and v are detector pixels, £is the projection angle, D the distance from the source to the center of
rotation. Subsequently the differential is taken by the central difference with respect to u. Here 4 is the
sampling grid interval with respect to the variable .
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2.3 Neural Network hFBP for fan-beam data

The reconstruction image can be obtained by backprojecting the projection data onto the reconstruction plane.
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In Eq.(4), @ is the sampling grid interval with respect to the variable 8 = 8 + tan(%). Now v, can be replaced by

u-7, where rrepresents the distance from detector pixel v, to detector pixel u; Eq.(4) can then be rewritten as
shown in Eq.(5).
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From Eq.(5) we can remove two filters Ay and hz that are independent of £ independent of the detector
position ¢, and solely dependent on the distance ¢

hi(7) =

a

and hz (I) m (6)

1671:2(1'+A)
The remainder of Eq.(5) is used as input data for the neural network This means that the number of input
values will be equal to two times the number of detectors N, namely N input values z:- from the first part of
Eq.(5) and N inputs zz from the second part of Eq.(5).
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These inputs can now be filled in into the equation of the neural network to calculate the output value (ho) for

every hidden node.
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By changing the positions of the summations over fand k&, one sees that the wr and w2 can function as filters
on the transformed projection data. These filters correspond to the two filters of Eq.(6). By applying the input
of Eq.(7) to the neural network, the network actually trains the filters of the hFBP. After the training phase, the
reconstruction only consists of performing a number of filtered back projections equal to the number of hidden
nodes and at the end combining these hFBP reconstructions to the final reconstructed attenuation value. This
speeds up the reconstruction significantly.
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3. Experiments and Results

To test the performance of NN-hFBP against FBP and SIRT, two types of experiments were performed:
limited angle experiments where the angles were equidistantly spaced and experiments where the angles
mimic the projection angles in an inline environment when the object rotates. For each experiment, projections
from a ground truth CT image of an apple were simulated. The CT image was obtained by scanning the apple
with 470 projection angles over an angular range of 188° and subsequently reconstructing the apple with a
conventional reconstruction algorithm. The networks are trained by using 3 separate sets of data: a training
dataset with 1000 different ground truth CT cross-sections from 10 apples, a validation dataset with another
1000 different cross sections from 10 apples and a test dataset with 100 cross sedtions from 10 apples.

In the first experiments, we assume the apple is scanned in a circular scanning setup where the source and
detector rotate equidistantly around the object under inspection. No noise is added to the projection data. In
Figure 2(a) the average root mean squared error (RMSE) of 100 reconstructions from different cross sections
compared to their original images is shown in function of the number of projection angles. The RMSE is
calculated in a mask that corresponds to the shape of the apple in the ground truth image. The noise that is
present outside the apple is not taken into account. Figure 2(b) shows the corresponding average
reconstruction time in function of the number of projection angles for the different methods. As an example,
Figure 3 shows reconstructions obtained with different reconstruction techniques when projection data is
acquired from 32 different projection angles and Figure 4 shows reconstructions obtained with different
reconstruction techniques from 512 projections.

For a low number of projection angles, the reconstruction time of NN-hFBP is similar to the one of the SIRT
algorithm and higher than the time of the FBP algorithm but the RMSE is much lower. For high nhumbers of
projection angles, SIRT obtains slightly better reconstructions than NN-hFBP. This is however at the expense
of a much higher reconstruction time. The reconstruction time of NN-hFBP only increases a little with
increasing number of projection angles. This is because most of the time of reconstruction with the NN-hFBP
is needed for rebinning.
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Figure 2: (a) Average RMSE of 100 reconstructed images in function of the number of projections and (b) the
average reconstruction time for every reconstruction algorithm in function of the number of projections
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Figure 3: FBF (b), SIRT (c) and NN-hFBF (d) fan-beam reconstructions of an apple cross section (a) from 32
projection angles
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Figure 4: FBP (b), SIRT (c) and NN-hFBF (d) fan-beam reconstructions of an apple cross section (a) from 512
projection angles

The FBP is known to perform well for equidistant projection angles but have
problems with non-regularly spaced projection angles. Therefore we see in Figure 6(a) that the RMSE does
not decrease as steep as in Figure 2(a). For a low number of projection angles, the NN-hFBP has a lower
RMSE compared to the other methods and the reconstruction time is again similar to those of SIRT. For large
frequencies, the RMSE of NN-hFBP only decreases slightly and the SIRT algorithm provides better results.
This is however again at the cost of a much higher reconstruction time. In this case, one needs to define what
is most important. If speed is an issue, it might be that the reconstruction quality of NN-hFBP is good enough
to see the necessary details. Figure 7 shows that for a high number of projection angles, the reconstruction
quality of SIRT is better, but the reconstruction made with the NN-hFBP algorithm also provides us with
information about darker regions in the apple.

4. Conclusion

In this paper we proposed a NN-FBP based CT reconstruction algorithm for apples in a fan-beam geometry,
the NN-hFBP. For equidistantly spaced projection angles, the NN-hFBP outperforms the SIRT reconstruction
in reconstruction quality for a low number of projection angles and in reconstruction time for a high number of
projection angles. If the projection angles are not spaced equidistantly, the NN-hFBP still performs better than
the SIRT algorithm for a low number of projection angles. When this number increases, the SIRT obtains
better reconstructions in terms of the RMSE, but at a much higher reconstruction time that is not feasible in an
inline practice. In this case the user has to decide what is more important.
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Figure 6. (a) Average RMSE of 100 reconstructed images in function of the number of projections and (b) the
average reconstruction time for every reconstruction algorithm in function of the number of projections
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Figure 7: FBP (b), SIRT (c) NN-hFBP (d) fan-beam reconstruction of an apple cross section (a) from 512 non-
uniformly spaced projection angles
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