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Loss of containment of storage tanks can involve atmospheric dispersion of toxic or flammable gases. The 
accident of Buncefield oil storage depot in 2005 and the Viareggio LPG explosion in 2009 tragically illustrate 
the potential consequences of dispersion phenomena in complex environments. Gas dispersion modeling in a 
complex geometry is a tricky task because of the effects of obstacles, which involves for example a high level 
of turbulence. Indeed, flows around obstacles have specific behavior like boundary layers effects and 
recirculation zones. Different approaches exist to estimate atmospheric dispersion, depending on the 
modeling strategy. Gaussian models solve advection-diffusion equation (ADE) assuming several hypotheses, 
in particular uniform flow and turbulence, but are not very efficient in congested areas. On the other hand, 
Computational Fluid Dynamics (CFD) computes very likely turbulent flows and dispersion by solving non-linear 
Navier-Stokes equations for congested areas. Turbulence can be modeled by considering turbulent kinetic 
energy k and its dissipation rate ߳ (k-ε model standard). A full 2D CFD modeling requires solving 5 equations 
(continuity, momentum on x and y axes, transport of k and ߳). These numerous calculations induce long 
computing time on large areas with fine meshing. Once the wind field is calculated, dispersion of a pollutant 
can be rapidly computed by ADE.As the major part of computing time of CFD models is dedicated to 
determine the turbulent flow, Artificial Neural Networks (ANN) were thus investigated to calculate x and y 
velocities and turbulent diffusion coefficient Dt. This machine learning method is a powerful statistical tool as it 
is able to reproduce accurately any nonlinear and dynamic behavior from a database without any physical 
assumption. This study focused on turbulent flows around cylindrical storage tanks, with a diameter in the 
range [10 m – 52 m]. Database is designed by RANS ݇ − ߳ CFD model. Several neural networks solutions are 
proposed and their efficiency is compared and discussed in terms of quality, real-time applicability and real-life 
plausibility. Four criteria (coefficient of determination, factor of two, fractional bias and normalized mean 
squared error) are used to evaluate the model. While the accuracy is kept within satisfying criteria values, 
computational time is reduced by a factor of 600. 

1. Introduction 

Danger is inherent to industrial facilities. Indeed, many hazardous materials are usually stored in numerous 
tanks connected together by combination of pipes, pumps and others process equipment. In the next section, 
analysis of previous accidents is focused on the near field of the leakage. 

1.1 Recent accidents analysis 

Several atmospheric dispersion accidents occurred in the past decade, involving leakage from storage tank. 
These usually lead to explosion and/or fire. In this context, unleaded petrol evaporation, dispersion and 
explosion that occurred at Buncefield Terminal, United Kingdom in December 2005 is a case of study. The 
overfilling of one of the larger tank of Buncefield Oil Storage Depot releases about 260 m3 of petrol from the 
roof. The liquid fell and had been fragmented into spray of droplets, implying evaporation which produced 
dense cloud of flammable vapors. Evolution of such a cloud is induced by weather conditions, stable and 
humid with low wind velocities (< 3m.s-1) in this case. Water vapor condensed in the cloud and produced a 
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visible mist that has been captured by security cameras. Evolution of the cloud is well known and highly 
influenced by the presence of obstacles: bund, tree lane, tanks (Gant and Atkinson, 2011). Finally, ignition of 
the cloud led to a massive vapor cloud explosion, and, by domino effect (Heymes et al., 2014), to oil fire that 
last over 2 days. This accident reveals the importance of the perturbation of the flow by storages with different 
shapes. This work is focused on forecasting flows around cylinder. 

1.2 Flow around cylinder 

Flows around common shapes have been evaluated through field and small scale experiments. Taneda 
(1977) compared several laminar and turbulent regimes around sphere and vertical cylinder to identify 
different behaviors including a recirculation zone in the wake of the obstacle for sufficient Reynolds. For higher 
Reynolds number, Hosker Jr (1985) identifies several zones for uniform inlet flow around cylinder (Figure 1). A 
displacement zone is located upwind of the obstacle (a), where a high pressure is applied on the cylinder. 
Boundary layers are created on the edges of the obstacle (b). Separating point location depends on the flow 
turbulence. The turbulent recirculation zone or cavity is observed directly behind the obstacle (c). The 
minimum pressure is observed on body at wake centerline. Due to the increase of turbulence and velocity 
orientation, presence of dispersed gas last. At the cavity closure point begin a far field zone characterized by 
vortex generation and turbulent wake (d). 
 
 

 

Figure 1: Typical 2D mean flow field around a cylinder, based on Hosker (2005) with - a: flow separation 
– b: boundary layers creation – c: recirculation zone – d: turbulent wake 

Unsteady aspect of the turbulence is noticed, especially in the far field of the obstacle. Flow in the wake is 
perturbed up to 50 to 100 body diameters. Moreover, the flow structures around a cylinder are considered 2-D 
(Ozgoren et al., 2011). In the following study, mean velocity field are considered at 2 meters of altitude 
(corresponding to values of Reynolds number superior to 106). A fully turbulent separation for a flow around 
two-dimensional cylinder is achieved for Reynolds number around 3.105 (Schlichting, 1979).  
Several experimental investigations of atmospheric dispersion around obstacles have been made in full-scale. 
Those are necessary to feed models (both reduced scale and numerical) and evaluate them. In this goal, 
Mavroidis et al. (2003) investigated the behavior of plumes originating from sources locations differing from 
the axis between center of obstacle and mean wind direction. Recirculation zone is of primary importance, as 
the measured concentrations increase when the source is displaced slightly from the axis. Moreover, 
comparisons between full-scale and wind tunnel experiments show the same trend: highest mean 
concentrations were overestimated by the wind tunnel, credited to the more complex scales of turbulence 
observed in the field. 

1.3 Flow modeling 

Computational Fluid Dynamics (CFD) models are eulerian models solving continuity and momentum 
equations on a mesh to obtain wind fields. When dealing with atmospheric flows, it is necessary to take 
turbulence into account. Several models can be detailed. In the scope of this study, RANS (Reynolds 
Averaged Navier Stokes equations) standard ݇ − ߳ model is considered. ݇ represents the turbulent kinetic 
energy and ߳ the linked dissipation rate. Transport equations of these variables are used to close the system 
of equations through the modeling of turbulent viscosity ߤ௧ : ߤ௧ = ఓܥߩ ݇ଶ߳ (1) 

With ߩ the density of the fluid and ܥఓ, a model constant equal to 0.09. 
Air compressibility is generally neglected when Mach number is less than 0.3. In case of atmospheric flow at 
ground level, Mach number is less than 0.06 for a maximum wind speed of 20 m.s-1 so that density is 
considered as constant. These CFD models give accurate results for turbulence. Accuracy is usually better as 
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the mesh is finer, but implies an increase of computation time. In this study, a database was generated using 
a classical 2D RANS standard ݇ − ߳ model with turbulence set chosen as recommended by Richards and 
Hoxey, (1993). Some limitations exist when dealing with wind engineering simulations using these models, 
especially concerning the degradation of wind and turbulence profile. However, the aim of this work was to 
check if neural networks are able to simulate a modeling turbulent flow around an obstacle, and not to 
question the ability of CFD modeling to predict atmospheric flow. To investigate this question, own limitations 
of CFD models were not considered. 

1.4 Artificial Neural Networks 

Artificial Neural Networks (ANNs) are powerful non-linear fitting tools based on statistical modeling. They are 
generally used when the process to model is not fully known. Two properties are essential: the universal 
approximation (Hornik et al., 1989), and the parsimony (Barron, 1993). Thanks to these properties ANNs are 
able to predict efficiently future behaviors on never encountered situations. Information about the non-linear 
phenomenon to simulate or forecast must be provided using a database. As a non-linear fitting tool, ANN 
generally acts as a black-box: the physics cannot be extracted from the results. Nevertheless, ANN can be 
used to forecast physical phenomenon, presenting powerful models (Kong A Siou et al., 2011). A neuron is a 
nonlinear, parameterized, bounded function. Variables are assigned to the inputs of the neuron. Output of a 
neuron is the result of nonlinear combination of the inputs, weighted by the parameters and using an activation 
function. Sigmoid s-shaped functions are generally used. A neural network is the composition of several 
neurons. Parameters calibration is done through application of an algorithm using the training database and 
designed to decrease the model error, in this work the Levenberg-Marquardt method is adopted (Hagan and 
Menhaj, 1994). The function realized by the ANN is continuously tested on a disjoined set of examples, 
namely the stop set. This last set is employed to avoid overtraining using early stopping (Sjöberg et al., 1995). 
Lastly, performances of the model must be measured on another set, never used during training or stopping: 
test or validation set. 

2. 2D horizontal Flow around cylinder forecasting using Artificial Neural Networks 

In the present work, the aim was to check relevance of ANN to predict main characteristics of a turbulent flow 
around a cylinder. It noticed that, this study follows a previous work which consisted to compare machine 
learning tools to model the atmospheric dispersion (Lauret et al., 2014). This model was designed especially 
for emergency management or anticipating situation. It has to be effective and time computation efficient.  

2.1 Database creation 

In case of a flow around a cylinder and so as to apply atmospheric dispersion equations, the required 
parameters are velocities in the direction of the incident flow, on orthogonal direction, and information of 
turbulence. These data are given by the turbulent viscosity, which is not constant on the entire plane. It is 
directly linked to the turbulent diffusion coefficient by the Schmidt number ܵ௖௧: ܦ௧ = ߩ  ௧ܵ௖௧ (2)ߤ

This number is taken equal to 0.7 in the following. Thus, 72 different CFD simulations of 2D flow around 
cylinder in neutral stability conditions at altitude ݖ = 2	݉ are generated combining different inlet velocities and 
diameter. Values used are respectively included in the interval [2 ; 10] m.s-1 with a step of 1 m.s-1 and in the 
interval [10 ; 52] m with a step of 6 m. This database represents more than 8 million values of velocities and 
turbulent diffusion coefficient. In order to build a database for neural networks, it is necessary to sample it. 
Stratified random sampling is proposed in this work using concentrations as class parameter. The database is 
thus created by selecting EC examples in Ic classes in order to limit the total number of examples at 30 000. 
This database is divided in three sets: training set, validation set (or stop set) and test set. Validation set is 
used to avoid overfitting and test set is used to evaluate the performance of the model (Kong A Siou et al., 
2012). 

2.2 Variables selection and neural network architecture 

Inputs of the neural networks have to be representative of the flow and easily determinable in real life (Lauret 
et al., 2013). Three types of input can be determined: the inlet velocity, cylinder diameter and coordinates 
where output is evaluated. These inputs are reported in the following table: 
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Table 1: Neural networks inputs 

Inputs 
Targets ܷ௫ ௜ܷ௡௜⁄ ܷ௬ ௜ܷ௡௜⁄  ௧ܦ 

Angle formed by the axis ray and cylinder center to location ray (rad) x x x 
Distance from center of the cylinder (m) x x x 
Inlet Velocity (m.s-1) x x  
Obstacle radius (m) x x  
Characteristic number of the flow (ܴ. ௜ܷ௡௜)   x 
 

ANNs used in this work are two-layer perceptron with hyperbolic tangent as activation function for the first 
layer and linear function for output layer. Several trainings are done to ensure that the best neural network is 
used in simulations. Optimization is done through three different ways: initialization of neurons parameters, 
number of neurons in hidden layer and database sampling. Training results are discussed in these terms. 

2.3 Results on training database 

ANN evaluation is usually done through the coefficient of determination or Nash criterion calculation (ܴଶ) on 
the test sets. This criterion evaluates the data fitting of the ANN model for a ሾ−∞; 1ሿ range, with 1 the perfect 
match and 0 the forecasting result equals to the mean value of test set. Results of best training for each flow 
parameter are reported in the following table: 

Table 2: ANN training results for ܷ௫ ௜ܷ௡௜⁄ , ܷ௫ ௜ܷ௡௜⁄ , and ܦ௧ 
Flow parameter ܷ௫ ௜ܷ௡௜⁄ ܷ௬ ௜ܷ௡௜⁄  ௧ܦ
Ic best number 20 40 20 
Ec best number 30 20 20 
Number of neurons in hidden layer 20 20 20 
R2 value 0.985 0.997 0.999
Training duration (s) 906 3,731 2,775
 

Values of R2 are below 0.98 and thus correspond to correct accuracy. It is noticed that training duration can 
last more than one hour on a classical workstation. Nevertheless, training duration is a long process while 
simulations are very fast as observed in the following paragraph. 

3. Results on situations independent from training and model selection 

To assess the performance of such a model, it is necessary to evaluate the neural networks against unlearned 
data. Nine different test cases are then evaluated containing three different inlet velocity values (2.5, 5.5 and 
9.5 m.s-1) and three different cylinder diameters (12, 26 and 50 m). These values are taken to be 
representative of low, medium and high values of each parameter. Four performance criteria are used. 
Coefficient of determination shows a general accuracy of the model. Factor of two (FAC2) corresponds to the 
fraction of the values between an half and twice the observed values. Best value is 1. Fractional bias (FB) 
represents the systematic error. Best value is 0. FB positive values represent underestimation and negative 
values represent overestimation. Normalized mean square error (NMSE) represents the global error. Best 
value is 0. 
Results of the nine test cases are reported in the Table 3. Considering velocity on the x-direction, the 
coefficient of determination and the factor of two show a good agreement with CFD results with values 
superior to 0.94. Systematic error is at a low level with only one case overestimating CFD values. Global error 
is low. Considering velocity on the y-direction, coefficient of determination gives values equal to 0.98 but the 
factor of two is low, less than 0.48. This can be explained by the high number of values near zero that can be 
lightly over or under estimated and this produced high level of error when ratio is used. The same problem 
occurs when the fractional bias is evaluated (and consequently normalized mean square error), giving 
unrepresentative values. Nevertheless, estimation of absolute error is thereafter detailed. 
Considering turbulent diffusion coefficient, values of coefficient of determination and factor of two are both 
higher than 0.9. Nevertheless, test cases with a large diameter are less well predicted. The same observation 
can be done on the systematic and total error with a magnitude of ten between 50 diameters test cases and 
remaining test cases. Moreover, fractional bias indicates overestimation of turbulent diffusion coefficient 
values for the major part of test cases except the ninth. 

1624



Table 3:  Performance criteria for the forecasting of x and y velocities and the coefficient of determination by 
the neural network on nine test cases. 

Test 
cases 

Diameter 
(m) 

Velocity 
(m.s-1) 

Ux Uy Dt 
R2 FAC2 FB NMSE R2 FAC2 R2 FAC2 FB NMSE 

1 12 2.5 0.98 0.99 10-3 

10-3 

0.98 0.46 0.98 0.99 -1.2x10-2 1.3x10-3

2 12 5.5 0.98 0.99 10-4 0.98 0.47 0.98 0.99 -1.1x10-2 1.2x10-3

3 12 9.5 0.97 0.99 -10-4 0.98 0.48 0.98 0.99 -7.5x10-3 1.1x10-3

4 26 2.5 0.96 0.99 10-3 0.98 0.45 0.98 0.99 -2.3x10-3 4.0x10-3

5 26 5.5 0.96 0.99 10-3 0.98 0.45 0.98 0.99 -7.1x10-3 3.7x10-3

6 26 9.5 0.96 0.99 10-3 0.98 0.46 0.98 0.99 -3.4x10-3 3.4x10-3

7 50 2.5 0.94 0.99 10-3 0.98 0.44 0.93 0.95 -3.2x10-2 3.7x10-2

8 50 5.5 0.95 0.99 10-3 0.99 0.45 0.92 0.94 -1.8x10-2 3.8x10-2

9 50 9.5 0.96 0.99 10-3 0.98 0.44 0.91 0.93 2.1x10-2 4.1x10-2

 
Based on the mean values of performance criteria listed above, ANN modeling tends to correctly forecast 
characteristics of the flow. The following pictures represent the relative error between CFD reality and ANN 
modeling of ܷ௫, ܷ௬,  .௧ for test case 9, which seems to be the more difficult to forecast by the ANNܦ

 

Figure 2: Absolute values of relative error between ANN and CFD of x and y velocities and turbulent diffusion 
coefficient for test case 9 – global view (left) and zoom near the 50 m cylinder (right) 

For determination of ܷ௫, relative error is not significant except in the near wake of the cylinder, in the 
recirculation zone. Errors are more important when considering forecasting of ܷ௬. Deficient values find here 
are mainly due to the mean value of zero that can induce high level of relative error even with low level of 
absolute error. ܦ௧ is the most difficult parameter to forecast. Indeed, errors can be found through the whole 
domain. Nevertheless, wake of the cylinder is correctly modeled. The worst values modeled are in the front of 
the cylinder and on the side of the far wake. ANN underestimates these values: values obtained are less than 
values deduced from atmospheric conditions and thus represent non-logical values. Possible explanations are 
that sampling method enhanced high values compared to low ones and that the focused zone corresponds to 
high gradient changes. These results have to be compared in terms of computation time for each model. 
Duration depends on the domain to model and the resolution required. In this work, space step is 1 m 
representing more than 350 000 node values on a structured mesh. This is comparable to CFD case with 
unstructured mesh. Time computation is extremely different with about 20 minutes for RANS ݇ − ߳ CFD model 
and less than two seconds for the ANN model.  
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4. Conclusions 

The work presented here shows the forecasting feasibility of flow characteristics by artificial neural networks. 
Several steps are needed to design the network e.g. forming a database, sampling it and selecting the 
optimized ANN. To be real time effective, the ANN model has to use data directly available. Here, data used 
are only wind velocity at the inlet and obstacle diameter. Hence, ANN models the entire 2D velocity and 
turbulent diffusion coefficient field. Performance criteria show satisfying values with coefficient of 
determination superior to 0.9 for all training-independent test cases. Despite these results, several limited area 
are less well forecasted, specifically nearby the obstacle. Investigations have to be done to improve 
forecasting in these areas. Otherwise, using the ANN model instead of CFD model improves significantly time 
computation by a factor of 600. Knowledge of the wind field and the turbulent diffusion coefficient allows 
calculation of the dispersion of a passive pollutant around a cylinder. Several methods can thus be used, 
using particle tracking or solving the advection diffusion equation. Further work will be focused on the 
performance improvement, implementation of gas dispersion and addition of multiple obstacles with different 
shapes. In this perspective, using concatenation of separate cases is considered in first approach.  
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