MoS2 Nanosheets for HER and LIB

Maria Sarno, Anna Garamella, Claudia Cirillo*, Paolo Ciambelli

Department of Industrial Engineering and Centre NANO_MATES, University of Salerno
Via Giovanni Paolo II, 132 - 84084 Fisciano (SA), Italy
clcirillo@unisa.it

Very high surface area thin nanosheets of MoS2, with also low lateral dimension, as well as high number of edges sites, were prepared via a solvent free, easily controllable and scalable process. The syntheses were performed by thermolysis of ammonium thiomolybdates (NH4)2MoS4 in a continuous flow reactor, monitored with a mass spectrometer. The precursor decomposition was promoted in the temperature range 25-400°C, obtaining amorphous MoS2. Nanosheets were obtained thought a successive annealing, while material order can be improved by progressively increasing temperature and time. It was found that the annealing time at the end of the first step determines a reduction of the final nanosheets lateral size and number of layers. The samples were characterized by Raman Spectroscopy, Scanning (SEM) and Transmission (TEM-EDS) Electron Microscopy, thermogravimetric analysis (TG-DTG-MS), X-ray diffraction (XRD).

1. Introduction

MoS2 nanostructure have generated intense scientific interest owing to their promising electronic and mechanical properties (Ramakrishna Matte et al., 2010), in the area of energy conversion and storage. MoS2 has been widely investigated as catalysts for electrocatalytic or photocatalytic hydrogen evolution reaction (HER) in aqueous solution and as efficient electrode material for lithium ion batteries (LIBs) (Zhao et al., 2013; Stephenson et al., 2014). Even if bulk MoS2 is not active for the HER, it has been forecasted by using density functional theory calculation (Hinnemann et al., 2005) an excellent electrocatalytic activity (tafel slope 55–60 mVdec⁻¹), linearly dependent by the number of edge sites, for MoS2 nanocatalyst (Jaramillo et al., 2007) prepared on an Au substrate. The same authors (Bonde et al., 2008) prepared later a more commercially relevant nanocatalyst, MoS2 nanoparticles on a Toray carbon paper, finding higher tafel slope (120 mV/dec) and exchange current density. Further information about the electrocatalytic activity of MoS2 comes form the paper of Merki et al. (Merki et al., 2011). They prepared amorphous thin films of MoSx (about 1-2 μm thick), finding that the real catalyst was amorphous MoS2, that exhibits a Tafel slope of 40 mVdec⁻¹. More recently, engineering the MoS2 structure, to have an high surface area mesostructure, exposing a large fraction of edge sites, a tafel slope of 50 mV/dec has been found (Kibsgaard et al., 2012).

The reported results clearly demonstrate that the catalytic activity of MoS2 toward the HER is very promising and closely associated with the different morphology of the prepared nanostructures. It deserves to be further investigated to definitely elucidate the effect of the support through a systematic comparison of the same nanostructured MoS2 on a support and alone, and clarified the effect of order of the nanostructured materials prepared through a simple and scalable process.

MoS2 is a conductive material characterized by a distinctive layered structure that makes it favorable for reversible Li⁺ intercalation/deintercalation (Xiao et al., 2010). The electrochemical performance of MoS2 as a LIB electrode was believed to be significantly influenced by morphology, structure and particle size. The Li diffusion path could be significantly shortened in nanostructured MoS2 improving the performance. As a nanostructure materials MoS2 can exist in a diverse range of morphologies and microstructures. These include fullerene like MoS2, MoS2 nanotubes, MoS2 nanowires, nanoribbons and nanosheets. In particular, with regards to this specific application, hydrothermal synthesized MoS2 nanoflakes (Feng et al., 2009) and amorphous MoS2 nanoflowers (Li et al., 2009) (prepared by an hydrothermal method), and nanotubes (Dominko et al., 2002) (prepared by a mixture of C60, used as promoter, and MoS2 powder at 1010 K and
have been studied as anode materials and have been proven to have high capacity. On the other hand, at this stage the majority of the structures have not been investigated as electrode materials for lithium storage, the effect of the material order has not been clarified.

MoS$_2$ nanotubes (Loh et al., 2006), MoS$_2$ nanorods (Ota and Srivastava, 2006), MoS$_2$ nanofibers (Liao et al., 2001) and MoS$_2$ nanoflakes (Pol et al., 2008), have been synthesized. Moreover, after the discovery and the consequent enormous attention toward graphene properties and potential application, a growing research space is currently addressed to other 2-D materials and, among them, to layered inorganic materials such as dichalcogenides and especially MoS$_2$. In particular, for these specific applications the preparation of thin nanosheets, with also low lateral dimension, allows to have an high total surface area exposed, as well as a number of edges sites and short path for Li diffusion. Significant effort has been devoted to prepare MoS$_2$ thin layers. Several methods have been used to synthesize thin layers of MoS$_2$: scotch tape assisted micromechanical exfoliation, exfoliation in solution, physical vapor deposition, hydrothermal synthesis, electrochemical synthesis and sulfuration of oxides of molybdenum. However, the MoS$_2$ so produced tends to form structures similar to fullerene, zero-dimensional nanoparticles or nanotubes. A very interesting approach consists in a thermolysis of MoS$_2$ precursors in organic solvent (Altavilla et al., 2011). However, the products are often amorphous or low-crystalline and shown significant deficiency of molybdenum and the presence of impurities, such as carbon and oxygen.

Another method for producing thin layers of MoS$_2$ from amorphous to highly crystalline, with large surface area, consists of a solvent free thermolysis process (Liu et al., 2012). The method is one of the most scalable, permitting also, for example, in presence of a template structure (Sarno et al., 2013; Ciambelli et al., 2011; Sarno et al. 2012), to prepare very promising carbon/MoS$_2$ composites (Zhao et al., 2013; Stephenson et al., 2014; Li et al. 2011). Here we report, the synthesis of MoS$_2$ nanosheets, via a solvent free easily controllable and scalable procedure. MoS$_2$ nanosheets have been obtained by thermolysis of ammonium thiomolybdates (NH$_4$)$_2$MoS$_4$ in a continuous flow microreactor fed by nitrogen. The precursor decomposition was promoted in the temperature range 25-400°C, which permits to obtain amorphous MoS$_2$ sheets, followed by a second step in the range 25-1100°C to increasingly improve the starting material quality. In particular, the synthesis process was monitored with a mass spectrometer to follow the evolution of the reactions. Moreover, we have given much attention to the effect of changing the operating conditions, such as temperature, time and number of reaction steps, in view of a process/materials optimization. All the samples obtained were characterized by the combined use of different techniques such as micro-Raman Spectroscopy, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy – Energy dispersive X-ray spectroscopy (TEM-EDS), thermogravimetric analysis coupled with a mass spectrometer (TG-DTG-MS), X-ray diffraction (XRD).

2. Experimental

MoS$_2$ nanosheets has been prepared by thermolysis of ammonium thiomolybdates (NH$_4$)$_2$MoS$_4$ (Sigma Aldrich, purity of 99.99%; 0.25g) in a N$_2$ environment, thought two steps of conversion: (i) from room temperature to 400°C + isotherm for 10 min (MoS$_2$$_1$) or 60 min (MoS$_2$$_2$); followed by (ii) a cooling from 400°C to room temperature; and finally (iii) a step from room temperature to 1100°C + isotherm for 30 min (MoS$_2$$_3$ from MoS$_2$$_1$ and MoS$_2$$_4$ from MoS$_2$$_2$) or 75 min (MoS$_2$$_5$ from MoS$_2$$_2$).

The annealing was carried out in a continuous flow microreactor, consisting in a quartz tube (16 mm internal diameter, 300 mm length), the precursor was loaded on a sintered support (Ciambelli et al., 2011; Sarno et al., 2013). All the samples obtained were characterized by the combined use of different techniques. Transmission electron microscopy (TEM) images were acquired using a FEI Tecnai electron microscope operated at 200 KV with a LaB6 filament as the source of electrons, equipped with an EDX probe. Scanning electron microscopy (SEM) images were obtained with a LEO 1525 microscope. Raman spectra were obtained at room temperature with a micro-Raman spectrometer Renishaw inVia with a 514 nm excitation wavelength (laser power 30 mW) in the range 100-3000 cm$^{-1}$. Optical images were collected with a Leica DMLM optical microscope connected on-line with the Raman instrument. For all the sample about 40 measurements have been carried out. The laser spot diameter was about 10 µm. XRD measurements were performed with a Bruker D8 X-ray diffractometer using CuK$_\alpha$ radiation. Thermogravimetric analysis (TG-DTG) at a 10 K/min heating rate in flowing air was performed with a SDTQ 500 Analyzer (TA Instruments) coupled with a mass spectrometer.
3. Results and discussion

The thermolysis of ammonium thiomolybdates (NH$_4$)$_2$MoS$_4$ has been extensively studied (Berntsen et al., 2008; Brito et al., 1995; Leist et al., 1998). It has been reported that (NH$_4$)$_2$MoS$_4$ thermolysis in an N$_2$ environment resulted in the conversion of (NH$_4$)$_2$MoS$_4$ to MoS$_3$, releasing ammonia and hydrogen sulfide to the gas phase ((NH$_4$)$_2$MoS$_4$ → 2NH$_3$ + H$_2$S + MoS$_3$) at lower temperatures, followed by a conversion of MoS$_3$ to highly disordered MoS$_2$ (MoS$_3$ → MoS$_2$ + S), the product remained amorphous up to around 350°C, while crystallinity set in at 400°C when first vague lines appeared on the diffractograph. To improve the MoS$_2$ quality, it is rational to increase the thermolysis temperature. Although a measure of agreement is evident in the previous studies, there is ambiguity in the transition temperatures, nor systematic nanostructures synthesis studies have been performed. We develop the syntheses in two steps, the first one between 25-400°C, to obtain disordered MoS$_2$, further annealed for 10 or 60 min, the second step between 25 to 1100°C, followed by 30 or 75 min of annealing to further improve the degree of order. We prepared two different kinds of materials: low crystallinity samples at 400°C and high crystallinity samples at 1100°C, and following the evolution of the precursor thermolysis with the help of a thermogravimetric analyser. In particular, in Figure 1a the thermogravimetric (TG-DTG) and temperature profiles, during the test simulating the MoS$_2$ synthesis conditions, characterized by the two longer isotherm steps, are reported as function of time. It is possible to distinguish five temporal phases: (I) from room temperature to 400°C; (II) 1h in isotherm at 400°C; (III) from 400°C to room temperature (not followed by the thermobalance); (IV) from room temperature to 1100°C; (V) 630 min in isotherm at 1100°C. After an initial weight loss due to water, at temperatures between 150-250°C the DTG profile shows a sharp weight loss due to NH$_3$ and H$_2$S release, as clearly indicated by the corresponding total ion current (TIC) of the most intense mass fragments peaks: m/z = 15, 16, 17 form NH$_3$ and 32, 33, 34 from H$_2$S (reaction 1). The NH$_3$ and H$_2$S release completing at 360°C. At 170°C a sulphur release starts, with a maximum at 380°C, compatible with the evolution of reaction 2. A further 3 wt.% is lost in the 60 min isothermal step at 400°C. During the further temperature increase (phase IV) and starting from 400°C a sulphur release (m/z=32) happens. A weight loss is also registered during the high temperature isotherm, due to an intrinsic MoS$_2$ thermal instability (Spalvins, 1987) and the unavoidably few trace of oxygen, with SO$_2$ (m/z=64) release and contemporaneous formation of oxides. To follow the crystallization, XRD patterns were recorded on the decomposition products after heating at specific temperatures (Figure 1b). Both MoS$_2$ samples exhibit the loss of the original precursor structure and the typical x-ray pattern of amorphous MoS$_2$, the (002) reflection results broader and less intense if compared with the rest of the spectrum for sample annealed for 60 min, indicating an exfoliation tendency for longer time annealing. After the second step of thermolysis the typical spectrum of 2H-MoS$_2$ is shown for both MoS$_2$ samples, a very broad (002) reflection is shown in the spectrum of MoS$_2$ (Berntsen et al., 2008; Leist et al., 1998), while MoS$_2$ exhibits a more pronounced sawtooth (002) peak, sharper and less intense if compared with MoS$_2$. At increasing high temperature annealing time, the peak at about 13° (2$	heta$) becomes more and more pronounced and sharper, indicating a progressive in-plane restacking, also the typical MoO$_2$ peaks appear timidly, likely due to an initial oxidation phenomenon. Similar to the case of graphene, Raman spectroscopy can be employed to characterize the thickness of MoS$_2$ nanolayers (Castellano-Gomez et al., 2012; Lee et al., 2010). The bulk MoS$_2$ shows bands at 407.5 and 382 cm$^{-1}$ due to the A$_{1g}$ and E'$_{2g}$ modes (Li et al., 2012). As reported by Lee et al. (Lee et al., 2010), the frequency difference between the two most prominent Raman peaks depends monotonically on the number of MoS$_2$ layers. In particular, in Figure 2 number of significant Raman spectra are reported for MoS$_2$, MoS$_2$ and MoS$_2$, most of MoS$_2$ and MoS$_2$ sheets have lower than 6 layers, while MoS$_2$ sheets are decidedly thicker, in agreement with the XRD observation. It is worth to notice the presence in MoS$_2$ of sheets consisting of more than 10 layers if compared with MoS$_2$. For comparison, MoS$_2$, MoS$_2$ and MoS$_2$ micrographs are shown in Figure 3, it is evident in the resolution limits of the instrument, a delamination of the MoS$_2$ powders after the second step of thermal treatment (compare Figures 3d and 3e). Finally, MoS$_2$ consists of lower size powders with a rougher surface. Figure 3g shows the complete N$_2$ adsorption-desorption isotherm of MoS$_2$, it presented a well-developed porous structure with a type IV isotherm, which had an obvious hysteretic loop with a desorption step above the relative pressure of 0.4.
Figure 1. TG-DTG profiles, during the test simulating the MoS2_5 synthesis conditions, and the corresponding TIC (a). XRD diffraction patterns of the precursor and samples after heating at the different temperatures (b).

Figure 2. Raman Spectra of MoS2_3, MoS2_4, MoS2_5 and the frequency difference between A1g and E’2g Raman modes

Figure 3 SEM images of MoS2_1 (a), MoS2_3 (b) and MoS2_4 (c) - 200X, scale bar 100 μm. SEM images of MoS2_1 (d), MoS2_3 (e) and MoS2_4 (f) - 1000X, scale bar 10 μm. N2 adsorption-desorption isotherm of MoS2_3 (g).

The MoS2_3 BET surface areas (SA) is 208 m²/g, a very high value if compared with that reported for conventional MoS2 prepared by thermal decomposition of MoS2 precursors (from 49.3 to 64.4 m²/g in Leist et al. (Leist et al., 1998), where the authors speculated that both the heat treatment and the presence of vacuum are necessary for porous material to be obtained and compared their results with the BET surface
areas of crystalline 5.8 m²/g and restacked 10 m²/g MoS₂). BET SA of 40 m²/g and 77.7 m²/g has been reported for conventional MoS₂ in (Skrabalak et al., 2005) and (Berntsen et al., 2003), respectively. A solvothermal route was explored in (Berntsen et al., 2003) to obtain a BET of 152.9 m²/g and an ultrasonic spray pyrolysis in (Skrabalak et al., 2005) to obtain a surface area of 250 m²/g. MoS₂₃ has a total pore volume of 300.01 mm³/g, and a multimodal pore size distribution (BJH Desorption pore distribution) centred at 2, 3, 7, 10 and 15 nm (pores between exposed surface sheets). It is worth to notice that the BET SA of MoS₂₁ is 2.88 m²/g, while the MoS₂₄ SA results 260 m²/g.

Figure 4 TEM images of MoS₂₁ scale bar 2 µm (a), scale bar 500 nm (b), scale bar 10 nm (c,d). TEM images of MoS₂₂ scale bar 1 µm (e). TEM images of MoS₂₃ scale bar 50 nm (f), scale bar 20 nm (h), scale bar 10 nm (i,l). TEM images of MoS₂₄ scale bar 50 nm (g), scale bar 20 nm (m).

Typical TEM image of the MoS₂ samples are shown in Figure 4. MoS₂₁ (Figure 4a) is constituted of larger (tens of microns in size) and smaller few aggregates (1 micron in size); MoS₂ layers, 0.62 nm stacked, are visible in both aggregates (Figure 4c and d). The Figure 4e shows MoS₂₂, constituted of small particles with size of few hundred nanometers. MoS₂₃ (Figure 4f) and MoS₂₄ (Figure 4g), obtained at the end of the second step and after 30 min of annealing, exhibit a different morphology. MoS₂₃ is constituted of larger sheets consisting of few layers or more than 10 layers (inserts of Figure 4h), moreover smaller sheets of few nanometers lateral size with the characteristic MoS₂ fringes can be observed in the figures 4g and 4m for MoS₂₄.

4. Conclusions

Very high surface area thin nanosheets of MoS₂, with also low lateral dimension were prepared via a solvent free, easily controllable and scalable process. The precursor decomposition was promoted in the temperature range 25-400°C, obtaining amorphous MoS₂. Nanosheets were obtained thought a successive annealing, while material order can be improved by progressively increasing temperature and time. It was found that the annealing time at the end of the first step determines a reduction of the final nanosheets lateral size and number of layers.

References

Altavilla C., Sarno M., Ciambelli P., 2011, A Novel Wet Chemistry Approach for the Synthesis of Hybrid 2D Free-Float Single or Multilayer Nanosheets of MS2@oleylamine (MdMo, W), Chem. Mater. 23, 3879–3885;

Kibsgaard J., Chen Z., Reneicke B. N., Jaramillo T.F., 2012, Engineering the surface structure of MoS$_2$ to preferentially expose active edge sites for electrocatalysis, Nat. Mater. 11, 963-969.

