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In the last years new renewable energy sources started to be exploited to compensate exhausting fossil 
fuels and minimize anthropogenic factors on climate change. Microalgae have reemerged as potential 
next-generation feedstock for biofuels and they are considered very promising on the long term, since they 
have a potentially high productivity per area and they can be grown on marginal land without competing 
with food crops. Our work is focused on the seawater microalga Nannochloropsis gaditana, which 
combines a fast growth rate with a strong accumulation of lipids and therefore yields great potential for 
these kinds of applications.  
Solar radiation provides all the energy supporting algae growth and lipids production and for this reason 
the available radiation must be exploited with the highest possible efficiency to optimize productivity and 
make their cultivation on a large scale competitive. Investigation of the bases affecting light use efficiency 
is thus seminal to elucidate the connection between light and the lipids/biomass productivity.  
To this aim we investigated the influence of different illumination regimes, nutrients availability and batch/ 
continuous cultivation on N. gaditana cultures productivity and light use efficiency. This information will be 
exploited for optimization of growing systems but also to design Nannochloropsis gaditana genetic 
manipulations. Strains with altered composition of the photosynthetic apparatus and modified regulation of 
photosynthesis are being selected and characterized to increase Nannochloropsis gaditana productivity in 
photobioreactors. 

1. Introduction 
The production of biodiesel using microalgae biomass represents one interesting alternative to replace 
petroleum-derived transportation fuels. Among the several thousand different algae species, we need to 
select those characterized by a high growth rate and a high lipid content (Sforza et al., 2010). After the 
screening of different species, Nannochloropsis gaditana emerged as a promising candidate for these 
applications thanks precisely to its high growth rate in a wide range of light irradiations and the ability to 
accumulate large amounts of lipids, especially in condition of nitrogen deprivation (Simionato et al., 2011; 
Simionato et al., 2013b).  
Algae are photosynthetic organisms and thus solar light provides all the energy supporting their 
metabolism (Rodolfi et al., 2009). Solar light is a very abundant resource but it is also distributed on the 
whole earth surface and therefore highly diluted. As a consequence, algae growing in an outdoor 
pond/photobioreactor are commonly limited by light availability. For this reason, in order to develop any 
sustainable system for large scale algae cultivation, it is fundamental that algae use light with the highest 
possible efficiency to produce biomass (Simionato et al., 2013a). One of the major issues in growing algae 
in a photobioreactor (or pond) is the fact that cultures have a high optical density and thus light is strongly 
inhomogeneously distributed (Zou and Richmond, 2000; Carvalho et al., 2011). Cells on the surface are 
more exposed and easily subjected to excess illumination, with an oversaturation of photosynthesis 
leading to energy dissipation as heat. These cells not only absorb most of the available energy but also 
use it with low efficiency since a large fraction is dissipated. The remaining cells in the deeper layers, 
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instead, only receive a negligible amount of light, which reduces photosynthetic rate and biomass 
accumulation. Because of this inhomogeneous distribution, global photosynthetic productivity of algae 
growing in photobioreactors and ponds is reduced and far lower than the one achievable in laboratory 
conditions (Melis, 2009).  
The improvement of algae photosynthetic productivity in a large scale cultivation system is an objective 
requiring a multidisciplinary approach. In fact a deeper understanding of the molecular mechanisms 
influencing light use efficiency in algae must be combined with the development of improved growing 
systems. Several complementary strategies should be investigated to reach a productivity sufficient to be 
economically and energetically competitive. As described in Sforza et al. (2012), for instance, an optimized 
alternation of light/dark cycles has good potential to increase photosynthetic efficiency. In fact, flashes of 
intense light can be exploited efficiently for photochemistry since they produce reduced electron 
transporters that can be processed during the following dark period. These data suggest that the 
optimization of the mixing rates, creating an appropriate alternation of light and dark phases within a 
photobioreactor, can greatly improve photosynthetic efficiency of the whole culture (Richmond et al., 2003; 
Chen et al., 2011). 
The improvements in photobioreactor design should go in parallel with genetic engineering approaches 
which can also contribute to increase light use efficiency. Photosynthetic organisms evolved large 
antennae systems to increase the light harvesting efficiency and consequently maximize light absorption in 
their natural environments (Kirk, 1994). In the photobioreactor growing conditions, however, such a good 
light harvesting ability is detrimental, since, as discussed above, it strongly increases culture optical 
density (Li et al., 2009).  
Different works from literature demonstrated that light distribution in a photobioreactor can be improved, for 
instance, using algae mutants with a reduced antenna size (Mussgnug et al., 2005). These mutations in 
fact bear a double positive effect: first, when a cell is exposed to a strong irradiation it harvests less light, 
reducing the damage on the photosynthetic apparatus and the need to activate energy dissipation 
mechanisms. Secondly, light is better distributed in the culture and thus more energy is available for cells 
in the internal parts of the mass culture, increasing their photosynthetic rate and, consequently, biomass 
accumulation (Melis, 2009). 
Previous works in this direction are all focused on the model green alga Chlamydomonas reinhardtii which, 
although being a valuable model organism, is not suitable for biofuels production and cultivation in large 
scale systems. For this reason we decided to generate Nannochloropsis gaditana mutants with altered 
photosynthetic apparatus regulation through a random mutagenesis with Ethyl Methane Sulfonate (EMS). 
EMS mutagenesis is recognized as a powerful technology in mutation breeding: this alkylating agent 
causes a high frequency of nucleotide substitutions, as detected in different plant genomes (Talebi et al., 
2012).  
In the past years, EMS has been used to induce the over-production of metabolites  in  microalgae, 
including astaxanthin, carotenoids and eicosapentaenoic acid (EPA), an important polyunsaturated  fatty  
acid  (PUFA)  for  the  prevention  of  several human diseases (Doan and Obbard, 2012). In our case an 
additional advantage is the fact that obtained strains will be more easily testable in outdoor 
photobioreactors avoiding issues with the use of transgenic organisms.  

2. Materials and Methods 
2.1 Microalgae growth 
Nannochloropsis gaditana from CCAP, strain 849/5, was grown in sterile F/2 medium (Guillard and Ryther, 
1962), using sea salts 32 g/L from Sigma Aldrich, 40 mM TRIS/HCl pH 8, Sigma Aldrich Guillard’s (F/2) 
marine water enrichment solution. Cells were grown in Erlenmeyer flasks with 100 μmoles photons m-2 s-1 
(μE) of illumination and agitation at 100 rpm. Temperature was set at 22 ± 1 °C. Cultures were then treated 
with an antibiotic cocktail of Ampicillin (100 µg/mL), Streptomycin sulphate (100 µg/mL) and Kanamycin 
sulfate (100 µg/mL) (all from Sigma Aldrich) for 48 h to obtain axenic cultures. 

2.2 EMS mutagenesis and mortality determination  
The microalgae suspension in the late exponential growth phase at a concentration of 2 x107 cells/mL 
were mutagenized using 70 mM EMS (Ethyl Methane Sulfonate) for 1 h in darkness at room temperature 
with mild agitation. Following incubation, treated cells were centrifuged at 5000 g for 8 min to separate cell 
pellets which were then washed four times with sterile F/2 medium to remove excess EMS. After EMS 
treatment, cells were then re-suspended in sterile F/2 medium and plated on agar F/2 dishes. The amount 
corresponding to ≈ 1500 cells was plated to obtain ≈ 150 colonies sufficiently separated. Plates were 
cultured at 22 ± 1 °C, under illumination at 20 μmoles photons m−2 s−1, until the algae colonies were 
emerged. 
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In parallel to this possibility it is important to underline that differences in this parameter can be due also to 
mutations affecting growth rate independently from the photosynthetic apparatus. In this case, in fact, the 
colony will contain less cells and thus appear as paler. To reduce the number of false positives, it was 
important to inoculate different strains as homogenously as possible (Figure 1b). Even more importantly 
we exploited additional video-imaging measurements further to select bona fide antenna mutants. These in 
fact are expected to have a higher saturation point of photosynthesis because of their reduced light 
harvesting ability. Saturation of photosynthesis can be monitored by measuring the quantum yield of 
Photosystem II (ΦPSII), which estimates the proportion of the light absorbed, exploited for photochemistry 
(Maxwell and Johnson, 2000). When cells are exposed to strong illumination, this value decreases 
because photosystems are oxidized and thus in a “closed” state, not available for photochemistry (Figure 
2b).  
The decrease in this parameter can be exploited as an indication of the photosynthesis saturation in light 
adapted cells and we expect mutants impaired in light harvesting to have higher values of this parameter 
with respect to the wild type. As shown in Figure 2b, we found that some mutants with a reduced Fo/Area 
also showed a decreased saturation of photosynthesis, thus suggesting that these are genuine antenna 
mutants (e.g. mutants numbers 68, 124 and 133). Twelve mutants, showing these characteristics, were 
identified and are currently under further investigation to verify their effective reduction of Chl content per 
cell, as well the detailed alteration in photosynthetic apparatus (antenna less mutants in Table 1). 
The same fluorescence measurements, after exposition to strong illumination, can also be exploited to 
evaluate the ability of the mutants to activate regulatory mechanism of photosynthesis, quantifiable by the 
Non Photochemical Quenching parameter (NPQ). This allows estimating cells efficiency in dissipating 
energy as heat, when absorbed in excess by the photosynthetic apparatus. Mutants presenting an altered 
NPQ response were positively selected, yielding in the selection of nine additional mutants cataloged in 
the NPQ phenotype class of Table 1 (e.g. mutants number 34, 99 and 100 in Figure 2c). These strains are 
potentially interesting for a growth in a photobioreactor because the reduction of heat dissipation 
mechanisms, which is detrimental in a natural environment, can instead reduce energy waste in a 
photobioreactor, where most of the cells are exposed to limiting light. 
Finally the same measurements of quantum yield of Photosystem II (ΦPSII) allowed the identification of 
mutants where this parameter was lower or showing a stronger decrease than wild type upon light 
exposure. These seven mutants (selected as ΦPSII phenotype mutants in Table 1, e.g. mutants numbers 
59 and 62 in Figure 2b) are affected in photosynthetic apparatus assembly and/or have increased light 
sensitivity. These mutants are likely not suitable for a large scale cultivation since these defects are most 
likely resulting in a reduced productivity. Nevertheless their deeper investigation can provide new insights 
on photosynthetic apparatus composition and assembly in a group of algae relatively poorly characterized 
such as Nannochloropsis genus. 

Table 1: Classification of the selected mutants on the basis of the most pronounced photosynthetic 
parameter through which they differ from the wild type. 

Category Phenothype 

Antenna less 
 

Less Fo/Area than wild type; 
Lower saturation of photosynthesis; 

Different degrees of chlorophyll reduction (pale color); 
Interesting for biofuels. 

NPQ phenotype 
 

NPQ values lower than wild type; 
Interesting for biofuels. 

ΦPSII phenotype 
 

Strong alterations in ΦPSII; 
Light sensitivity, impaired photosystems assembly; 

Not interesting for biofuels, interesting for basic investigations. 
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Figure 2: In this picture are presented some of the selected mutants, retained on the basis of their altered 
photosynthetic parameters. In picture (a) is shown the Fo/Area value for Wild Type (WT) and three 
mutants (68, 124, 133). In picture (b) is shown the Photosystem II quantum yield trend for dark adapted 
WT and five  mutants (59, 62, 68, 124, 133), at different time  point after having switched on the light. In 
picture (c) is shown the NPQ trend for WT and three mutants (34, 99, 100), during a first period in the light 
and a second one in the dark, to show the mutants recovery ability. From these pictures is clearly evident 
the huge gap between the wild type  and the selected strains, for all the presented photosynthetic 
parameters. Mutants number 68, 124 and 133 belong to the antenna less mutant category; Mutants 
number 59 and 62 belong to the ΦPSII phenotype class, showing an important alteration in photosystem II 
quantum yield trend and appearing as light sensitive. Mutants number 34, 99 and 100 belong to the NPQ 
phenotype class. (The presented WT values were obtained from the analyses on seven different colonies 
unaffected in photosynthetic apparatus regulation).  

4. Conclusions 
In this work we screened a Nannochloropsis gaditana random mutants collection, obtained following 
treatment with Ethyl methane sulfonate (EMS), looking for phenotypes which may have a positive effect on 
photosynthetic performances of this alga growing in a large scale system. The rationale of this effort is that 
wild type algae isolated in nature have regulatory mechanisms of photosynthesis which are optimized to 
survive and thrive in their natural environment. Instead, in order to achieve an optimal productivity in the 
artificial environment of photobioreactors there is thus the need to select improved strains. 
The target is to find mutants which are not impaired in the basic reactions of photosynthesis but where 
photosynthetic apparatus composition and regulation is altered and allow a better exploitation of light in all 
the photobioreactor volume. For instance, the mutants with a reduced chlorophyll content per cell should 
reduce self-shading and then increase homogeneity in light distribution with a beneficial effect on 

 

a b

 

c

 

Light-ON Light-OFF 

767



productivity. Also mutants with reduced heat dissipation mechanisms should be more productive since 
most of the culture volume is light limited. In this work we managed to select 21 mutants presenting 
potentially interesting photosynthetic properties. These will be, in the near future, the subject of further 
investigations to evaluate other parameters, like the growth rate, looking for a few candidates which can 
indeed provide a higher productivity on a large scale. 
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