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Dispersion of toxic and flammable materials from Chemical industries represents a major issue in Risk 
Analysis; presently, integral models are generally used to assess dispersion consequences, due to the low 
CPU and time requirements connected to the use of these tools. 
Nevertheless, they are mainly developed and tuned for releases in open field (open spaces without 
relevant obstacles), and therefore they cannot properly account for the geometrical features of the 
dispersion domain. Computational Fluid Dynamic, on the other hand, allows a full 3D analysis, thus 
accounting for all the obstacles influence on the flow field, but it involves large computational requirements.  
In case of gas discharge directed towards nearby large obstacles, an impinged jet is expected: if the jet 
hits a nearby obstacle, the gas velocity suddenly drops, minimizing the inertial dispersion phase, thus 
reducing the relevant air entrainment and generally increasing the damages distances. Impinged release 
models are included in some commercial integral models for consequences assessment even if a clear 
method to decide when to use them is often missing. 
The aim of this work is to provide a comparison between the two approaches (CFDs vs. integral tools) in 
predicting damage thresholds for both impinged and non impinged jets. A realistic case-study of industrial 
interest was set-up and the fine tuning of all the involved models and parameters (turbulence modeling, 
geometry description, mesh independence, etc.) was finalized. 

1. Introduction 

Dispersions of toxic and flammable materials from Chemical industries represent a major issue in Risk 
Analysis, since they usually reach very large damage distances thus potentially involving a great number 
of people both inside and outside the plant; presently, integral models (simplified, uni-dimensional models) 
are generally used to assess dispersion consequences, such as DEGADIS, SLAB, ALOHA 
(BernatikLibisova, 2004) and UDM (Pandya et al., 2012), due to the low CPU and time requirements 
connected to the use of these tools. Integral models are lumped-parameter models, usually pseudo one-
dimensional, which account for some physical phenomena using semi-empirical relationships whose 
parameters are tuned on field test data (Hanna, 1994). Thus, they are mainly developed and tuned for 
releases in open field (open spaces without relevant obstacles), and therefore they cannot properly 
account for the geometrical features of the dispersion domain (Brook et al., 2003). Significant obstacles 
produce eddies, wakes, stagnation and recirculation points that can enhance or reduce mixing with fresh 
air, thus strongly influencing damage distances (Calhoun et al., 2000). Computational Fluid Dynamic, on 
the other hand, consists of the numerical solution of the Navier-Stokes transport equations over a 
computational domain spatially discretized through the definition of a calculation grid. This approach allows 
for a full 3D analysis, thus accounting for all the obstacles influence on the flow field as discussed in 
previous works (Busini et al., 2012, Busini et al., 2011, BusiniRota, 2014, Derudi et al., 2014, Pontiggia et 
al., 2012, Pontiggia et al., 2010, Pontiggia et al., 2009, Pontiggia et al., 2011), but it involves large 
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computational requirements (Tauseef et al., 2011, Steffens et al., 2013, AiMak, 2013, 
TominagaStathopoulos, 2013).  
In case of gas discharge directed towards nearby large obstacles, an impinged jet is expected: high 
momentum jets in open field are characterized by high velocities relative to the ambient air, thus involving 
a significant air entrainment; if the jet hits a nearby obstacle, the gas velocity suddenly drops, reducing the 
air entrainment and generally increasing the damages distances. 
Impinged release models are included in some commercial integral models for consequences assessment; 
since the use of the impinged vs. the open field model can produce large differences in damage distance, 
a reliable criterion to select the most appropriate model based on jet characteristics and release geometry 
is required. 
The aim of this work was to work out a comparison between the two approaches (CFDs vs. integral 
models) in predicting damage thresholds for both impinged and non-impinged jets with a realistic case-
study of industrial interest. Results of the two approaches were compared in order to obtain:  

1) a cross check of the CFD results in open field (thus validating the effectiveness of the CFD 
models in predicting the effect of atmospheric turbulence in open field, where the integral model 
are largely validated);  

2) a validation of the CFD capacity in describing the interaction between high momentum jets and 
geometrical obstacles in the near field, verifying that the initial loss of momentum of the impinged 
jet would resolve in lower initial fresh air entrainment and therefore longed damage distances;  

3) a comparison between CFD and integral methods predictions of impinged jet damage distances, 
to verify the over-conservative approach of integral methods;  

4) a solid and time effective simulation approach to be applied in a massive number of CFD runs to 
build up a criterion to evaluate the best available model for impinged jet dispersions. 

2. Materials and Methods 

In this work, CFD was used to perform the simulations coupled with the AsSM (Pontiggia et al., 2009) for 
the description of an atmospheric stability class consistent with Monin-Obhukov similarity theory profiles 
across the integration domain. Thus fully developed vertical profiles of velocity, temperature, turbulence 
intensity, and dissipation rate were used as boundary conditions at the wind inlet boundary. Standard 
boundary conditions were used for all the other boundaries (as reported in Table 1). The commercial 
package Fluent 12 (ANSYS Inc., 2009) was used for all the computations.  

3. Results and Discussion 

The case-study treated is part of a regasification plant in which an accidental release of methane gas was 
hypothesized. The jet is coming out of an Open Rack Vaporizer (ORV) and disperses in atmosphere 
leading to a steady-state release. In the vaporizer the methane is stocked in gas phase at the absolute 
pressure of 65 bar and at a temperature of 4,5 °C. The hole diameter is 0,0254 m (1 inch) and positioned 
at the centre of the pipe external surface. 
Firstly the open field dispersion of natural gas was modelled for a neutral stability class and 5 m/s wind 
speed at 10 m above the ground with the suite package PHAST in order to define the dimension of the 
expanded diameter, the final velocity of the jet (i.e., the velocity of the jet in correspondence of the 
expanded diameter) and the mass flow rate. The release is sonic and the gas calculated velocity after the 
atmospheric expansion is about 377 m/s, the expanded diameter is 0.7037 m and the mass flow rate is 
5.54 kg/s and the gas temperature is -65.72°C. The CFD simulations where performed considering the 
estimated condition of the release, the density of the gas was modelled as an ideal gas at constant 
pressure (thus providing only the dependency of density upon temperature). 
The geometry of the case-study comprehend the ORV (16mx8mx8m) and the pipeline (10 m long with a 
diameter of 0.4 m and 1 m far from the ground) as sketched in Figure 1. 
The simulated domain was 300mx50mx50m, thus wide enough to ensure the independencies of the 
simulations results from the chosen domain; it was meshed with a triangular grid for the faces and a 
tetrahedral one for the volumes, paying attention at the density of the cells, which must be higher in 
correspondence of the critical spots (such as the hole and the obstacle); to mesh the open field case, 
about 6.5.105 cells were used. To verify the independence of the results from the used mesh, the 
simulations were carried on also with a mesh of about 140.105 cells; the results of the two different 
configurations were comparable.  
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out a massive number of simulation to investigate an empiric relation between scenario 
description and most suitable modeling approach. 
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