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The present study focuses on the analysis of domino effect triggered by overpressure caused by blast 
waves due to explosions derived by deliberate attacks to process plants and carried out with home-made 
explosives. The effects of blast waves caused by home-made explosives were compared with those 
expected from a net equivalent charge of TNT by using a specific methodology for the assessment of 
stand-off distances. The methodology was applied to a case study demonstrating the potentiality of home-
made explosives in causing accident escalation and severe effects on population and assets, obtaining 
indications for the importance of adequate management of site security. 

1. Introduction 

According to the US Government Hazardous Substances Database, several substances and mixtures can 
be used for the realization of home-made explosives, starting from common chemicals sold in markets and 
pharmacies. Among many, two are often adopted for terrorist attacks, suicide bombing, and other 
malicious uses: Ammonium Nitrate (AN) - Fuel Oil (ANFO) and Triacetone Triperoxide Peroxyacetone 
(TATP) (Price & Ghee, 2009). ANFO is a tertiary explosive (TNT is secondary explosive) and is generally 
composed by 94 % of AN prills and 6% of adsorbed fuel oil. It is extensively used for several authorized 
purposes as in mine blasting. TNT equivalence is typically 80 %, ideal explosion energy is 3890 J/g, to be 
compared with the explosion energy of pure AN, 1592 J/g. AN prills for mining applications are however 
physically different from fertiliser prills used in home-made explosives. Indeed, the commercial AN used for 
blasting has a 20 % void space and is coated with #2 fuel oil (mainly C10 to C20 linear hydrocarbons) or 
kerosene. Hence, ANFO has a bulk density of approximately 840 kg/m3, starting from AN prills of about 
1300 kg/m3, whereas pure crystalline AN is 1700 kg/m3. On the other hand, homemade explosives made 
from AN fertilizer do not have high void fraction and are less efficient. This is clearly favored by the new 
European regulations for fertilizers (EC 2003/2003), which imposes a maximum content of AN (45 % w/w) 
for general use. Indeed, such fertilizers still may be used to obtain explosives, but require preparation to 
achieve a detonation. In any case, if commercial AN with50 % of dolomite - as inert - and diesel fuel are 
used, a detonation energy of 1071 J/g is obtained, much lower than pure ANFO. For amounts of dolomite 
higher than 30 % and diesel fuel, no detonation is observed (Buczkowski and Zygmunt, 2011).  
TATP is a primary explosive, often used as detonator, which is notable for the absence of nitrogen. This 
peculiarity is essential for avoiding conventional chemical bomb detection systems. Furthermore, TATP is 
almost undetectable by sniffer dogs. TATP is very unstable: it can be ignited by touch and explode 
spontaneously. Also it can be obtained from common household as sulphuric acid, hydrogen peroxide, and 
acetone. TATP is highly volatile and decomposes to form gas phase molecules (i.e. entropic explosion). It 
is actually composed by isomers and conformers, the dimer being more stable, with lower energy. The 
density is typically 1220 kg/m3. However, home-made TAPT formulations are typically in the range of 450-
500 kg/m3 (Kuzmin et al., 2008), and a corresponding detonation velocity of ca 1400 m/s. Thus, TNT 
equivalence, which is 88 % in ideal conditions, can reach a maximum of 50% for lower densities. Finally, 
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TATP is often stabilized with carbonaceous liquids and waxes so that the net charge is even lower (Siegel 
and Saukko, 2012). Nevertheless, Lefebvre et al. (2004) have demonstrated that home-made TATP is 
very sensitive to impact or friction, although the strength of explosion may strongly vary because the 
quality of the final product is very sensitive to the temperature during synthesis.  
In the general framework of security issues related to explosives, the present study investigates the 
possibility of using the two cited home-made explosives in order to damage process equipment, and to 
trigger a domino chain in the process plant due to consequences amplification (Kourniotis et al., 2000). To 
this aim, the peak overpressures generated by given amount of home-made ANFO or TATP have been 
calculated by using either Hopkinson-Cranz (mass) or Sachs (energy) scaled distance and TNT 
equivalence. Results have been adopted in vulnerability functions for domino effects (Salzano and 
Cozzani, 2005), compared against threshold resistance values (Cozzani et al., 2006), and used for the 
determination of inherently safe layout of equipment (Cozzani et al., 2007), also in the framework of 
managing emergency planning (Georgiadou et al., 2010). To this regard, it is worth noting that the 
proposed methodology has been proved to work accurately with CHN-based high-energy explosives, but 
arely proved to be effective with low energy substances, or for the uncertain behaviour of the same 
explosives with respect to density, composition, humidity and other chemical and physical parameters. 

2. Methodology 

Direct or indirect attack to sensitive target as industrial equipment storing hazardous materials can be 
performed by using home-explosives. In the case of self-produced ANFO, several kilograms to tons of 
explosive substances (maximum 10-50 t) can be positioned outside the industrial border in car, or van, or 
even truck parked in the road adjacent to the industrial installation. On the other hand, TATP is too 
hazardous to produce, and transport in large quantity. Indeed, it is typically adopted for single-man suicide 
attack. Hence, we assume that a maximum net-charge of 50 kg can be transported e.g. in backpack. Quite 
clearly, TATP attack can be only directed to equipment shell, e.g. as in the case of chlorine tank used in 
swimming pools or public water treatment system. In this work, no confinement (e.g. steel cases) has been 
considered and the effect of casing fragmentation has been neglected. Several previous publications 
provide data, references and correlations for the shock wave produced by ANFO (Price and Ghee, 2009) 
and TATP (Hargather and Settles, 2007). What is relevant here is that: i) the explosion energy gives a 
good reproduction of the destructive power of the substances at atmospheric pressure, which is the case 
analysed here; ii) light confinement (even paper) approximately doubles the severity of explosion; iii) the 
energy output from non-ideal explosives is dependent on charge size, which makes it difficult to define with 
traditional modelling methods. Table 1 reports the explosion energy and TNT efficiencies (TNTeff), 
expressed as the ratio of the explosion energy with the corresponding value for TNT, for either pure or 
non-ideal mixture. In the last case, the values have been calculated by using the Chemical Equilibrium 
Model (CEA) as previously shown for black powder (Salzano and Basco, 2012) and pyrotechnics (Basco 
et al., 2010). TNTeff is essential for unconfined explosion, whereas the heat of combustion, which is much 
larger, has to be included in quasi-static analysis if the case of confinement (Maienschein, 2002). 

Table 1:  Experimental heat of explosion (∆Hexp), and combustion (∆Hcomb) and TNT efficiencies (TNTeff) 
for the analysed explosives. 

Explosive ∆Hexp (kJ/kg) ∆Hcomb (kJ/kg) TNTeff (-) ∆Hexp/∆Hexp,TNT (-) 
TNT  4680 14961 1.00 1.00 
ANFO (94% AN; 6% Fuel Oil) 3890 578 0.60 – 0.88 0.83 
TATP (Trimer) 2803 28192 0.30 – 0.92* 0.60 
DADP (Dimer) - 23465 - 1.26 
AN/dolomite (90/10) + diesel fuel 3234 - - 0.69 
AN/dolomite (50/50) + diesel fuel 1071 - - 0.23 

 
The effects of a blast wave on structure or equipment are dependent on its overpressure only, at least in 
the far field and conservatively. To this regard, Table 2 summarizes the types of equipment and the 
corresponding overpressure threshold value for structural damage and escalation. Details can be found in 
Salzano and Cozzani (2005) and Cozzani et al. (2006). These values will be adopted for the vulnerability 
analysis and land use planning as in Salzano et al. (2013). 
For the aims of this study, the peak overpressure (ΔP in bar) with respect to the distance for any 
equivalent mass of TNT, given the TNTeff, may be calculated by the following correlation (Bounds, 1997): 
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where r is the distance (in m) and mTNT,eq is the equivalent TNT mass (in kg) for a given amount of home-
made explosive (mexp in kg) calculated accordingly to the following expression: 

expeffeqTNT,
mTNT=m ×  (2) 

Table 2:  Escalation thresholds for the escalation due overpressure and heat radiation for different 
equipment categories (Cozzani et al., 2006).  

Equipment category Overpressure (bar) Heat radiation (kW/m2) 
Atmospheric vessels 0.22 10 
Pressurized elongated vessels (toxic materials) 0.16 40 
Pressurized elongated vessels (flammable materials) 0.31 40 
 

3. Results and discussion 

In order to determine the potential impact of a terrorist attack carried out with home-made explosives 
against process equipment, stand-off distances - here defined as the minimum distance between the asset 
of interest and the area where an explosive device can placed without causing damages – have been 
evaluated. Table 3 shows the calculated stand-off distances for several types of industrial equipment by 
varying the net explosive mass in the home-made explosive charge, using the value of the TNTeff reported 
in Table 1, and considering the threshold values for domino effect (Table 2). As expected, scarce effects 
are due to the efficiency of detonation for pure “ideal” explosives, whereas the effects of the net explosive 
mass and the effect of lower efficiency is larger for the home-made explosives. As a rule of thumb we can 
than say that the non-ideality gives in this case a stand-off distance which is approximately half the value 
of the correspondent pure explosive. 
For the sake of clarity, a case study for a storage section featuring relevant inventories of hazardous 
chemicals located in an industrial complex surrounded by a residential area has been analyzed (Figure 1). 
A consequence analysis based on a vulnerability assessment was performed in order to highlight the 
different potential impact of domino effect triggered by pure process-related causes and escalation 
scenarios generated by external terrorist attack. In particular, we have considered:  
a) Primary scenarios only, e.g., associated to each individual tank without considering the possibility of 

domino effect, as described in Table 4; 
b) Domino effect triggered by internal process causes; 
c) “Weak” terrorist attack with limited quantities of explosive (100 kg) inside the industrial complex; 
d) “Severe” external terrorist attack with a high amount of explosive (50,000 kg) loaded on two trucks 

outside the industrial complex. 
The home-made explosive selected for accidents #3 and #4 is AN/dolomite (50/50) + diesel fuel because 
its availability may be comparable with the large amounts here considered. We did not consider the 
scenario where a suicide bomber drives a truck filled with explosives into the industrial complex.  
In the case of domino effect caused by internal process malfunctions, the pool-fire following the rupture of 
tank AT3 is the primary scenario triggering domino escalation. In order to determine the possible 
escalation targets, the threshold values for thermal radiation as discussed by Cozzani et al. (2013) 
reported in Table 2 are considered. Figure 1b shows the iso-radiation contours obtained for the pool fire in 
AT3 catch basin. The flame is tilted by the wind which was supposed to blow towards South direction, thus 
the contours are not centred on tank AT3. As shown in the figure, all the targets in the tank farm are 
affected by the pool-fire, with potential fired domino effect escalation. Next, the possibility of external 
terrorist attack is analysed supposing that the access to the industrial site is not credible with large 
amounts of explosive. 
Thus, only the attack with limited quantities (accident #3) is considered inside the plant, while the one with 
higher quantities (accident #4) is located at about 130 m from the storage tanks (Figure 1a). In the case of 
the “weak” attack, the home-made explosive is not able to generate severe damages to the population but 
it has the potential to damage the equipment inside the storage facility, leading to domino effect escalation. 
In the case of “severe” attack, even if the considered amount of home-made explosive is large, due to the 
low efficiency and, thus, high stand-off distance, the escalation is only limited to one piece of equipment, in 
particular tank AT3. The other units are not affected by the explosion (e.g., stand-off distances reported in 
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chemical plant should be aware of this. On the one hand, the resistance of a barrier and the time it takes 
an adversary to get to the target, are important factors in the likelihood of interruption when setting up an 
analysis of the path an adversary might take to place a home-made explosive. On the other hand, suicide 
bombers, who are only interested in forced entry, should be considered as well. Hence, it is obvious that a 
diversity of security countermeasures is needed in a chemical company.  
Security management by means of the ring-of-protection concept, translates into a number of measures, 
as it is a combination of physical security equipment, people and procedures. Elements of all these types 
are typically needed together in order to offer the best chance of adequate asset protection against a 
variety of threats, amongst others home-made bombing by terrorists for inducing domino effects. 
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