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Smoke dispersion prediction systems are becoming increasingly valuable tools in smoke management. 

Numerical models for dispersion and chemical transport, also known as air quality models, can be used to 

investigate the fire plume evolution and the smoke impacts (e.g. concentration, temperature). However, all 

prediction systems include some level of uncertainty, which may occur from the meteorological inputs, 

diffusion assumptions, plume dynamics, or emission production.  

Uncertainty analysis enables to avoid as much as possible bad decisions that may have a large impact in 

a field such as safety. In this study, we are interested in the uncertainty propagation related to NO2 

atmospheric dispersion resulting from a crude oil tank fire. Uncertainties were defined a priori in each of 

the following input parameters: wind speed, pollutant emission rate and its diffusivity coefficient. For that 

purpose, a Monte Carlo approach has been used. 

1. Introduction 

Due to the complex nature of fire, mathematical prediction models used in fire safety engineering are often 

simplified and based on a number of assumptions. Even when very sophisticated models are available, a 

trade-off is often necessary between accuracy, cost and time for design engineers (Lundin, 1999). Many 

years of research have made it possible to model a wide range of fire phenomena with fire and smoke 

transport models.  

Accuracy of results from mathematical models is often complicated by the presence of uncertainties in 

their inputs data. Therefore, to be used in effective decision making process, the uncertainty in model 

predictions must be quantified (Refsgaard, 2007). Uncertainty analysis investigates the effects of lack of 

knowledge and other potential sources of error in the model (e.g., the uncertainty associated with model 

parameter values) (EPA, 2009). When carried out, uncertainty analysis allows model users to be more 

informed about the confidence that can be placed in model results and hence becomes a quality insurance 

factor. 

Within the framework of industrial fire effects, uncertainties in fuel loads, fuel consumption, and emission 

factors limit our ability to provide the models with accurate emissions inputs. There are also various other 

uncertainties in meteorological inputs, and parameters related to modelling of smoke transport and 

dispersion. In addition, there are uncertainties in chemical reactions and phase transformations (gas to 

particle and vice versa) during the modelling of ozone and secondary particulate matter formation.  

In this paper, we study the uncertainty propagation of input parameters of NO2 atmospheric dispersion 

model on the variation of its output (NO2 concentration). In particular, three input parameters are 

considered as variables: wind speed, pollutant emission rate and its diffusivity coefficient. Each of them is 

modeled through a probability density function (pdf). The uncertainty propagation has been conducted 

using the Monte Carlo sampling. All the results are presented in terms of mean values and confidence 

interval (lower and upper) bounds.   

The remainder of this paper is organized as follow. Section 2 is devoted to the presentation of the 

developed numeric dispersion model. Section 3 gives the general scheme of uncertainty analysis process. 

Also, therein are given the different probability distributions with respect to the considered uncertain input 

parameters. Section 4 provides the study results in terms of NO2 plume dispersion and its concentration at 

a given threshold distance (defined with regard to target elements). Finally, section 5 summarizes our 

concluding remarks.   
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2. Numerical Dispersion Model (NDM) for prediction of fire emissions 

Smoke dispersion prediction systems are becoming increasingly valuable tools in smoke management. 

There are a variety of potential applications that can help current management issues (Ferguson, 2001). 

These include screening, where methods and models are used to develop “worst-case” scenarios that help 

determine if alternative burn plans are warranted or if more in-depth modelling is required. Such tools also 

help in planning, where dispersion predictions aid in visualizing what fuel and weather conditions are best 

suited for burning or when supporting data are needed to report potential environmental impacts 

(Ferguson, 2001). 

The plume is described in terms of unsteady state convective transport by a uniform ambient wind of 

heated gas and particulates matter introduced into a stably stratified atmosphere by a continuously burning 

fire. The mathematical model of a smoke plume consists of the conservation equations of mass, 

momentum and energy which govern the temperature T, pressure P, density ρ and velocity (u,v) in the 

direction (x,y), in connection with the k-ε turbulence model (Mcgrattan, 1996).  

The induced flow, mass fraction and temperature field can be described by a set of equations derived from 

the conservation laws for mean flow quantities, the model used in this paper is simplified and described 

below: 

Table1:  Numerical dispersion model equations 
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     Equation of conservation of mass: 
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jetU : Rate of pollutant                                                    T  : Coefficient of thermal expansion 

 :     Viscosity                                                                m :  Coefficient of mass expansion  

TD :  Coefficient of thermal diffusion                              maxT : Maximum thermal gradient  

mD : Coefficient of mass diffusion                                  maxC : Maximum concentration gradient  
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The Dispersion model allows to follow-up of the plume by determining the quantities of the pollutants at 

each position and at every moment along the life cycle of the plume, which will make it to determine the 

residence time of the pollutant. That shows the importance of modelling as tool for decision making aid, 

especially to the experience feedback.  

3. Uncertainty analysis in the NDM  

Figure 1: Uncertainty propagation framework 

Uncertainty analysis may be achieved by means of different approaches depending on the level of 

uncertainty associated to the considered parameters. Monte Carlo sampling, fuzzy sets based-approach, 

intervals analysis are among these approaches (Buratti et al, 2012). Monte Carlo sampling method has 

become the industry standard for propagating uncertainties (NASA, 2002).  

The general scheme of that method is depicted in Figure 1. We give hereafter, in connection with NMD, 

the main steps of Monte Carlo approach.  

Construct a probability density function (pdf) for each input parameter (pdf reflects state of knowledge 
about the value of the parameter). In our case, the pdfs related to the previously mentioned uncertain 
parameters are defined in Table 2.  

- Generate one set of input parameters by using random numbers (uniformly distributed between 0 

and 1) according to pdfs assigned to those parameters. 

- Quantify the output function (NO2 concentration) using the above set of random values and 

according to the developed NDM. The obtained values are a realization of a random variable (X). 

- Repeat steps 2 to 3 N times (until a sufficient number, e.g. 1000) producing N independent output 

values. These N output values represent a random sample from the probability distribution 

(empirical distribution) of the output function.   

- Generate statistics from the obtained sample for the output result: Mean, standard deviation, 

confidence interval (percentiles), etc. 

The precision in the generated statistics is improved by increasing the number of iterations. It is therefore 

important to run enough iteration so that the statistics are stable. We note that sensitivity analysis, i.e. the 

study of how a model’s response can be apportioned to changes in model inputs (Saltelli et al, 2000), is 

out the scope of this paper.  

Table 2:  Probability distribution functions  

Inputs parameters  Type of distribution  Parameters range 

Min Mod Max 

Wind speed (m.s
-1

) Triangular 2 4.5 7 

NO2 initial concentration (% in the 

smoke) 
Continuous  uniform 0.1  0.8 

NO2 diffusivity coefficient characterized 

via the Prandtl number  
Continuous  uniform 0.7  1 
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4. Analysis results and discussion 

The solution of the partial differential equation described by the general Eq(1) and Table 1, using de finite 

volumes method which has been implemented on a FORTRAN environment, led to the establishment of 

curves depicted on Figures 2, 3, 4 and 5. These figures present, the NO2 atmospheric dispersion (plume) 

at time t = 100 s and 1200 s from the beginning of the tank fire, NO2 concentration profile for cloud height 

y = 50 m and y = 500 m against the Down wind distance (x) and NO2 concentration profile for a fixed 

Downwind distances x= 500 m and x= 1.5 Km meters against the cloud height (y). For each figure, the 

Lower bound, Mean and Upper bound are reported. The achieved iterations number is 1000. The output of 

each iteration is stored in a matrix which gives the NO2 concentration for all coordinates (x, y): xyc . 

On the basis of the resulted matrixes (1000 in total), one can compute the mean matrix ( Mean
xyc ), the lower 

bound matrix ( Lower
xyc ) and the upper bound matrix ( Upper

xyc ) as follows:  
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For 90% confidence interval, E equals to 1.64.  This being the case, the NO2 cloud dispersion related to 

Figures 2(a) and 2(c) (resp. 3(a) and 3(c)) shows respectively the 5
th

 and 95
th

 percentiles of that dispersion 

for t = 100 s (resp. for t= 1200 s). This means that the true plume dispersion is encompassed between 

these tow percentiles with a confidence of 90 %. Therefore, decision-makers should not base their 

judgment solely on the mean values, but they should, in particular, consider the upper bound plume 

concentration. 

To investigate the NO2 impact on the local population, Figure 4 has been drawn. In fact, NO2 is a very toxic 

gas which leads, through inhalation, to pulmonary oedema because of its low solubility in water. Some 

NO2 concentration threshold values are given in Table 3 (INERIS, 2004).   

Table 3:  Some NO2 concentration threshold values 

Exposure time (min) Threshold for irreversible effects (ppm) Threshold for 1 % lethality (ppm) 

1 105 170 

10 60 100 

20  55 90 

30 50 80 

60 40 70 

 

According to Table 3 and for 1200 s; (20 min) of release duration, the reference threshold values are taken 

equal to 55 ppm (for irreversible effects) and 90 ppm (for 1 % lethality). 
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     (a) Lower bound (5

th
 percentile)                     (b) Mean                          (c) Upper bound (95

th
 percentile)                               

Figure 2: NO2 plume dispersion for t = 100 s 

 

1426



     
(a) Lower bound (5

th
 percentile)                     (b) Mean                          (c) Upper bound (95

th
 percentile 

Figure 3: NO2 plume dispersion for t= 1200 s 

 

0,0

0,2

0,4

0,6

0,8

1,0

0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35

 Lower Bound

 Mean 

 Upper  Bound 

Concentration  (%)

y
 (

K
m

)

   Lower Bound

   Mean

   Upper Bound

x=1,5 (Km)

x=0,5 (Km)

 
 
Figure 4: NO2 plume dispersion at t= 1200 s, for (a) fixed x  
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Figure 5: NO2 plume dispersion at t= 1200 s, for fixed y     
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Figures 3, 4 and 5 show that the obtained concentrations (mean (1400 ppm), lower (1000 ppm) and upper 

bounds (1800 ppm)) at the fixed downwind distance (x=500 m) and for (y=50 m) are by far very high 

compared to threshold values. This means that in case of a similar accident, all the population would be 

exposed to an intolerable NO2 concentration.  

Hence, the population must be relocated to a safe area. For this purpose, concentration profiles, using 

upper bounds to be pessimistic, indicate that the threshold concentrations of 55 and 90 ppm remain 

exceeded even for the downwind distance of 2 km.   

5. Conclusion  

In this study, we have studied the relative influence of uncertainty in input parameters of an atmospheric 

dispersion model (wind speed, NOx initial concentration and NOx diffusivity coefficient) on the variation of 

the outputs. Knowing the uncertainty of a prediction is critical for the decision making process. While the 

uncertainties in various elements of the modelling process are being determined, it is also important to 

investigate how those uncertainties interact with each other and contribute to the uncertainty in the final 

result (e.g. NOx concentration predictions).  

Therefore, decision-makers should not base their judgment solely on the mean values, but they should, in 

particular, consider the upper bound plume concentration.          

In further work, we will include all parameters and also consider the parametric sensitivity analysis of the 

numerical dispersion model.   
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