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Key performance indicators in engineering problems include but are not limited to financial, operational, 
management and environmental factors, which are significantly affected by aspects such as seasonality, 
fouling, economic climate, production rates, supply and demand. The search for an optimal solution to a 
problem must take into consideration this variability, otherwise running the risk of critical dimensioning or 
cost estimation errors.  
Testing solutions using full data sets covering large periods of time can be a computational challenge, and 
the analysis of results complicated. For the feasibility of such a study, it is therefore necessary to reduce 
the large data sets to a number of base case scenarios, which simultaneously reduce the number of data 
points to be handled while still representing the variability of the system. A novel method is therefore 
developed to address this problem. 
This method offers a way of designing an index of sequential periods common to each production level, 
which when averaged accurately represent periods of nominal values for each level. The method exploits 
a multi-objective evolutionary algorithm, minimising the standard deviation of the base cases compared to 
the real data as well as respecting crucial null value periods. Null value periods are typically found in 
turnarounds or supply and demand problems and are usually incorrectly represented in other methods. 
Lastly, the resulting base cases are sequential periods, which is important when dealing with scheduling, 
shutdown or storage problems. The method is tested using anonymised data and is compared to 
previously existing methods, with results showing improvement in the performance of the base cases with 
respect to the objective functions. 

1. Introduction

Large scale industrial systems are most often strongly influenced by time. This influence can be seen on 
the production rates of end products, feedstock consumptions or availabilities, energy market seasonality 
and others. The variability of operations over time must be taken into consideration when studying 
optimisation, retrofit, production planning or maintenance problems as demonstrated by Pan et al (2012). 
When desiring to reduce the number of studied time periods by studying base case scenarios, a problem 
arises. The profiles follow a logic easy to understand by operators or engineers of specific processes. 
However, when looking at multiple profiles, be they correlated or not, it can be difficult to obtain a clear 
picture of the temporal relations and similarities of the considered profiles. Furthermore, the stochastic and 
unpredictable nature of such profiles adds an additional dimension when it comes to defining a typical 
operation profile for project evaluation.  
When looking for solutions concerning such time influenced problems, engineers must take into 
consideration the variation of profiles over long periods, such as years, rather than looking at limited 
punctual data. Otherwise the engineer risks proposing suboptimal or under/oversized solutions. Studying 
the 365 individual days of a year for several years is too complicated from a results generation and 
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interpretation point of view; therefore a way has to be found to reduce the data while maintaining a high 
level of detail. 
A simple solution is to average large periods of time, for example one or several years, as can be seen in 
Figure 1. This solution is however not satisfactory as it removes too much information, 
under/overestimating production, and completely ignoring days of zero flow rates.  
In fact, in design or retrofit problems, in order to decide on an investment, the engineer must define the 
sizes of equipments that define the investment and estimate the profit of the solution. 
The often neglected zero flow days are caused by turnarounds, shutdowns, resource or environmental 
constraints and many others. They can critically contribute to or disturb operations of systems regardless 
of size. Planification, logistics and other problems depending on multiple variables has to be sure to take 
these days into consideration in order to avoid unexpected consequences. These frequent days of zero 
flow rates exist in all systems, in a small unit’s operations, in a business park’s energy consumption, or in a 
petrochemical site’s use of resources and production rates. Gross averages entirely neglect these zero 
flow days. Another solution is to break down the year into several periods, creating base cases instead of 
single conditions. The question then becomes how to best choose these periods when considering 
multiple profiles. Monthly averages will keep a certain level of detail, though they are unlikely to protect 
days of zero flow as can be seen in figure 1 where averaged values are never equal to zero when they 
should be. The idea of creating an index of segments of nominal values over the year does remain 
attractive though.  
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Figure1: Yearly and monthly mean values of two selected production profiles. 
 
Wallace and Fleten (2003) carry out a detailed study of the different stochastic programming models in 
energy related problems. These address the stochasticity of variables without really addressing the longer 
term time problem. The discretisation and parameterisation of load duration curves is also covered by 
Wallace and Fleten, as well as by Poulin et al (2008). These curves are very adapted for studying uni-
dimensional problems, but as soon as more than one profile is considered, as is the case in the process 
industry for example, they loose their use. Furthermore when storage problems are considered, the 
load duration curves cannot be used as the continuity of sequences in time becomes important. The notion 
of typical days has been explored by Dominguez et al. (2011), in which a k-medeoids algorithm is used to 
cluster days into typical representative days. Using this method one is not able to choose the number of 
segments being studied. Continued work by Fazlollahi et al (2012) defined a general methodology for the 
creation of sequential typical days, applicable to storage problems, also using the k-medeoids method. 
Maréchal and Kalitventzeff (2003) studied a non-linear minimisation problem in order to break a year down 
into periods while minimising the difference between real and averaged values of the profiles, through the 
choice of an optimal number of periods and data sets to consider. Another solution would be to examine 
the entire solution space, that is to say all the possible ways of considering number segments in a given 
time-period. The number of indexes to analyse very quickly becomes overwhelming as the number of 
segments increases. For example, there are 1.02 x 10^19 ways to choose 10 segments in a year.  
For these reasons, this paper proposes an efficient methodology for optimally choosing a way to break 
down the year into limited numbers of segments over which the profiles can be averaged. Two 
performance indicators are defined to judge the quality of the results, the first one pertaining to the 
standard deviation between the averaged and real profiles and the second to the respect of the zero flow 
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Table 1:  Comparison of results for different methods and 12 segments 

Index Standard deviation PI [-] Zero flow days PI [d] 
Yearly average 0.456 155 
Monthly average  0.332 155 
Best EMOO Standard deviation PI 0.284 106 
Best EMOO Zero flow days PI  0.295 57 
Best Monte-Carlo Standard deviation PI 0.301 146 
Best Monte-Carlo Zero flow days PI 0.332 80 
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Figure 3: Time taken to reach performance indicator values for 20 segments 
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Figure 4: Pareto distribution of best results for EMOO and Monte-Carlo method using 20 segments 
 
Table 1 shows the advantage of using the EMOO segmentation method rather than the more simple 
monthly averages. The number of non-respected zero flow days is very high when using the monthly 
averages, for the yearly average method as well. Using the same number of segments it is possible to 
improve the standard deviation performance indicator by up to 15 % and reduce the number of penalizing 
flow rate days by up to 98. Figure 5 illustrates the results of using the best index for each indicator using 
12 segments. It can be seen how the best index for the second objective fits better into the zero flow days 
than the first objective or monthly mean method. The indexes are also illustrated. For selecting the index to 
use for a particular problem, Figure 4 shows a Pareto distribution of the effects of the indexes on the 
performance indicators, plotted against each other. In this way the engineer is able to choose the 
compromise between accuracy of profile and respect of the zero flow day constraints using a chosen index 
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of segments, the engineer will be able to use realistic base cases to simulate several punctual solutions 
leading to a global solution.  
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Figure 5: Best indexes for performance indicators for 12 segment, using EMOO methods. 

4. Conclusion 

Finding a way to deal with time dependence is key to engineering problems, especially those concerning 
logistics, planification and retrofits, for example on industrial manufacturing sites. When dealing with a 
complex system, accurately reducing the amount of data one is necessary to studying solutions. This 
paper shows a method for doing so while maintaining the highest accuracy possible and also respecting 
days where flow rates are null.  
Comparing results to a simple monthly averaging method as well as a Monte-Carlo space sampling 
method indicates that the use of an evolutionary multi-objective algorithm is suitable for finding the best 
index of segments to break down the year down into manageable segments. The algorithm does however 
take a long time to compute. This is not necessarily a problem as in general one needs only execute it 
once for a given problem. Importantly, the critical zero flow days were much better respected using this 
algorithm, significantly reducing their neglect. By taking into account these days, it is also expected that 
the impact of unforeseen shutdowns and logistics problems be reduced.  
This method can be applied to multi-period process integration studies in order to find thermoeconomically 
optimal energy efficiency solutions. This method can also be extended to short and long term storage and 
scheduling problems as the created base cases are sequential. 
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