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A Process Analytical Technology (PAT) compliant unit (acronym PATOV) was designed for online 

monitoring of Clean-in-Place (CIP) processes used in the pharmaceutical and food industry. The PATOV 

unit tends to significantly optimize CIP processes by online monitoring Total Organic Carbon (TOC) 

equivalent contaminations in the CIP off-stream to increase the efficiency and the quality of the cleaning 

process. The data will be used for an online control of the process to ensure optimal cleaning in minimized 

time. This will certainly allow for extensive savings of energy, water, and cleaning agents. Commercially 

available TOC analyzers qualified for the purpose require several minutes to provide a reliable TOC result. 

By implementing a mid-IR laser absorption technology, more precise a sensor based on an External 

Cavity-Quantum Cascade Laser (EC-QCL), the necessary information can be gained within seconds. An 

experimental CIP pilot plant was installed to reproduce CIP procedures by cleaning a vessel of a typical 

size used in pharmaceutical production processes. A continuous sample flow is gathered from the CIP off-

stream and fed into the PATOV unit which is placed close to the CIP pilot plant. The contamination of the 

CIP process water can be measured with a time resolution down to one second. The retention time of 

contaminations from the CIP pilot plant to the PATOV unit was minimized to <10 s by the design of an 

optimized sampling system. Currently, the TOC can be detected within the short timelines mentioned for 

single contaminants down to a concentration of e.g. 20 ppm for glycerol. Provided that the detection of 

lower concentrations and the calibration for other model contaminants, such as xanthan and proteins can 

be achieved, the PATOV unit has a high potential to improve the efficiency and the quality of CIP 

processes in the pharmaceutical and food industry. 

1. Introduction 

The cleaning of production equipment in pharmaceutical and food industry is a crucial part of the 

production process. While the invention and further development of automated CIP systems decades ago 

substantially increased the reliability and efficiency of the cleaning processes compared to manually 

cleaning by process operators, still a high potential for improvement of the cleaning processes remains. 

CIP equipments provide Water for Injection (WFI) along with cleaning agents at predetermined 

temperatures and pressures for realization of preconfigured cleaning cycles. To guarantee high level 

regulations demanded by the Food and Drug Administration (FDA) and other regulatory institutions (US 

FDA - CDER, 2005), the cleaning cycles usually last considerably longer than necessary. Typically, 

laboratory testing of a sample taken from the final rinse verifies if the requirements are fulfilled and the 

production process can resume. Apparently, this approach leads to waste of water, cleaning agents and 

energy and additional to long periods of process downtime.  
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Today, an established approach to verify cleaning processes is the quantification of the TOC in CIP off-

stream samples. An overview on cleaning validation is e.g. given by Lakshmana (2010), savings strategies 

for cleaning fluids have been investigated e.g. by Dif et al. (2012). Analyzing a sample for TOC is typically 

based on entirely oxidizing the sample. Thus every contained carbon atom reacts to CO2 which can be 

quantified using dispersive near-infrared techniques. While by now several online TOC analyzers are 

commercially available, as far as we know, up to now none of them is suitable for covering the whole 

cleaning process regarding a real time validation from very high (>10
4
 ppm) down to very low TOC 

(<1 ppm) contaminations. Commercially available online TOC analyzers to be considered for this task 

typically provide results with a frequency of several minutes. Even if the actual measurement time might be 

shorter, cleaning procedures or sample preparation extend the time before the analyzer can measure the 

next sample.  

To significantly optimize CIP processes by introducing an online, real time cleaning validation system a 

PAT compliant unit (acronym PATOV) was designed for online monitoring. The PATOV unit intends to 

ensure optimal cleaning, while simultaneously controlling cleaning time and cleaning agents used and to 

provide additional analytical information. The optimized process control has a high potential to significantly 

increase process efficiency and quality and therefore reduce cleaning costs and process downtime.  

The PATOV unit is based on a mid-infrared (mid-IR) laser absorption technology. The application of mid-IR 

spectroscopy to monitor the cleaning process is a promising alternative to the use of commercially 

available TOC analyzers. The mid-IR spectral region includes electromagnetic radiation with wavelengths 

between ~3 µm and ~20 µm. In this spectral region the fundamental vibrational states of molecules can be 

found, i.e. that molecules irradiated with mid-IR light will show absorption of specific wavelengths. 

According to the Beer-Lambert law, the concentration of an analyte can be determined by the amount of 

the absorbed light. The Beer-Lambert law is defined as 

0
A logI / I c d       (1) 

where I is the intensity spectrum of the sample [a.u.], I0  the intensity spectrum of the background or 

solvent [a.u.], α the molar absorption coefficient [L mol
-1

 m
-1

], c the sample concentration [mol L
-1

] and d 

the interaction length (= optical pathlength in the sample) [m]. Mid-IR absorption spectroscopy is molecular 

specific, direct and reagent-free. It offers online capability and quasi-continuous measurements with time 

resolutions down to <1 s. It is therefore a promising technique for application to process monitoring in CIP 

environment. 

2. Experimental CIP pilot plant 

To optimize process equipment and for testing of the PATOV unit, a base case CIP system was configured 

and installed. The base case was defined with regard to real pharmaceutical CIP systems, though the 

design was limited to necessary procedures and equipment sufficient for the testing purpose. The pilot 

plant enables to reproduce CIP procedures by cleaning a vessel of a typical size used in pharmaceutical 

production processes. A picture of the experimental CIP pilot plant is shown in Figure 1. It consists of a 

water storage tank, a heat exchanger, pumps for cycling the water and the connecting pipes. The vessel is 

located in the center of the pilot plant. A spraying device installed in the lid of the vessel delivers the 

cleaning fluid to the walls.  

 

Figure 1: Experimental CIP pilot plant. 
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Table 1: CIP steps 

Step Notation Liquid Temperature Operation 

1 1
st
 rinse WFI ambient once through 

2 1
st
 wash WFI, NaOH, 2% 70 °C recycle 15 - 60 min 

3 2
nd

 rinse WFI ambient once through 

4 2
nd

 wash WFI, HNO3, 2% ambient once through 

5 Final rinse WFI ambient once through 

 

To avoid build-up fluid in the vessel, a self-priming pump is mounted on the CIP system. It is used to pump 

the fluid out of the vessel, either back to the water storage tank for recirculation or directly to the drain. The 

experimental CIP pilot plant covers the major process challenges existing in real pharmaceutical CIP 

systems. The pilot plant is equipped with additional instruments and signals for experimental 

investigations. The gained supplemental data are used for optimization of the CIP system. Three sampling 

points are implemented to verify the optimal location for the PATOV unit, which have been identified by 

CFD simulations. To retrieve a gas free sample for the PATOV unit an additional separator unit was 

developed and installed. Finally, successive CIP steps (listed in Table 1) have been defined to represent 

the model process. 

3. PATOV analytical unit 

The PATOV unit with the implemented IR equipment is placed close to the CIP pilot plant. The PATOV unit 

consists of several components which are assembled in a custom built frame made out of aluminum 

profiles and aluminum boards with protective covers of acrylic glass (not shown). A scheme with the major 

parts and connections is shown in Figure 2.  

 

 

Figure 2: Scheme of the PATOV analytical unit  

The core element of the PATOV unit is the mid-IR absorption set-up consisting of the mid-IR laser light 

source, a transmission flow cell where the sample is placed into the optical path, and a thermoelectrically 

cooled mercury cadmium telluride (MCT) infrared detector. A novel broadly tunable QCL (Daylight 

Solutions Inc., USA) is used as light source. Compared to standard Fourier Transform IR (FTIR) 

spectrometers, the light intensity is much higher (more than four magnitudes higher than for glow bars) 

and the emitted wavelength can be controlled electronically, resulting in a device without an interferometer. 

The wavelength is set by an internal rotating grating that enables the laser to emit from 1,030 to 1,230 cm
-

1
. Tuning over the whole emission range and moving back to the start point takes ~4 s. The maximum 

spectral emission power density is approximately 350 mW. The transmission flow cell consists of two CaF2 

windows that are separated by a 160 µm layer of Polytetrafluoroethylene (PTFE) and an aluminum 

construction, holding the parts together. Due to the high intensity of the QCL, the optical path length is 

increased compared to conventional FTIR spectroscopy. The increased path length reduces the 

vulnerability to clogging which is an important factor in practical field application. As the laser beam is 
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~3 mm in diameter, an off-axis parabolic mirror is used to focus the light onto the detector element 

(element size ~1x1 mm). Conventional detectors in mid-IR spectroscopy require liquid nitrogen cooling 

which makes them unsuitable for applications outside the lab. To circumvent that, a MCT-detector with an 

implemented Peltier cooling element is used. This cools the detector element down to -58 °C. Due to the 

MCT-technology, every single laser pulse (repetition rate: 100 kHz) can be resolved.  

The interface between the PATOV unit and the CIP pilot plant is realized by a bypass system consisting of 

a gear pump, a T-connector and a control valve. The injection valve (6-port, VICI, Switzerland) offers the 

possibility to select between the process stream and the calibration channel with the cleaning agent or the 

calibration samples (Figure 2) to be directed to the transmission flow cell. Every analyte shows different 

extinction coefficients, depending on the used wavelength. In order to calculate the proper contaminant 

concentration those coefficients have to be determined. This is done by measuring samples with different 

concentrations of the analyte/contaminant and fitting an appropriate calibration curve. Hence, a calibration 

channel is used for injection of the background liquid (WFI) and for cleaning the transmission flow cell as 

well as for injection of off-line samples used for calibration of the prototype device.  

The PATOV analytical unit offers two modes of operation – scan mode and single wavelength mode. In 

scan mode a full absorption spectrum of over 200 cm
-1

 (maximum tuning range of the currently used QCL) 

is recorded. The spectral information offers the possibility to not only measure the amount of 

contamination but to even discriminate between the type of contamination. The time resolution in scan 

mode is currently limited to 6 s (limited by the used QCL). In contrast to that the single wavelength mode 

increases the time resolution to values <1 s. However, it is only possible to measure at a single emission 

wavelength, i.e. there is no spectral information available.  

4. Results 

Two different CIP steps (see Table 1) have been investigated: rinses and recycles. In both configurations 

either a single contaminant or a mixture of two contaminants (glycerol, xanthan, soy peptone) has 

manually been placed into the reaction vessel. The results presented here are restricted to glycerol 

contaminations, ambient temperature and Water/WFI as cleaning fluid (no caustic). The CIP system was 

activated and the contaminated off-stream process water was measured on-line by the PATOV unit. In 

recycle mode the cleaning water was pumped in a closed cycle. In rinse mode the cleaning water was 

pumped once through to the drain. For reference measurements samples were manually taken at defined 

intervals. The TOC measurements were conducted afterwards off-line using a Shimadzu TOC-VCSH/CSN 

TOC Analyzer.  

4.1 Calibration 
Calibration was performed by measuring a number of predefined glycerol solutions with the PATOV 

analytical unit. Data were acquired in single wavelength mode and served as calibration for calculating the 

TOC level which corresponds to the measured absorption. To improve the calibration a second procedure 

was tested by using a vessel equipped with a stirrer. The water in the vessel was weighed and defined 

amounts of tracer substance were added in steps. A calibration curve was calculated by averaging ten 

data points, ten seconds after each spiking step. This procedure resulted in a higher linearity compared to 

the manual calibration procedure. The calibration data are given in Table 2.  

Table 2: Calibration data 

first calibration second calibration 

R² = 0.9993 R² = 0.99986 

LODTOC ~ 90 ppm LODTOC = 20.6 ppm 

 
4.2 Laboratory experiments 
Laboratory experiments were conducted using the experimental CIP pilot plant described in Section 2. An 

example of an on-line measurement performed in scan mode is shown in Figure 4(a). The reaction vessel 

was contaminated with approx. 1,000 g glycerol (operating conditions: flowrate: 2,000 kg/h, temperature 

~20 °C, vessel volume 320 L, spray ball Sani Midget). The start of the cleaning process is indicated by the 

dashed arrow. The CIP system was used in recycle mode. Therefore, the contamination peaks reappear 

several times before further cycling has no impact anymore since the contamination is evenly distributed in 

the process water. The dotted arrow indicates a cleaning step of the flow cell. After the cleaning step, the 

glycerol contamination remains constant. Clearly the scan mode offers extensive spectral information of 

the contamination, yet the time resolution is significantly decreased compared to single wavelength mode. 
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(a) (b) 

 

Figure 4:  Cleaning cycle with glycerol as contaminant measured in scan mode (a) and measured in single 

wavelength mode (b). Measurement results for TOC off-line samples are included by symbols 

In Figure 4(b) an example of a glycerol recycle performed in single wavelength mode is shown (operating 

conditions: contamination approx. 1,000 g glycerol, flowrate 2000 kg/h, temperature  ~20 °C, vessel 

volume 320 L, spray ball Sani Midget). The absorption measured by the PATOV analytical unit was 

converted to a TOC equivalent using the calibration data given in Section 4.1 (first calibration). The TOC 

equivalent is shown as a function of time. Even though the cleaning effect depends on various parameters 

(e.g. flow rate, spray ball, contamination), all measured TOC curves exhibit basically similar progressions 

like the example shown in Figure 4(b). A first peak appears only a couple of seconds after starting the CIP 

process as the distance between the contaminated vessel and the sampling unit is very short. After the 

process water has passed one cycle a second peak is visible, which indicates that the cleaning is still 

productive. Finally the TOC approaches an asymptotic behavior indicating that further operation will not be 

worthwhile. The signal gained by the PATOV unit provides valuable on-line process information. Samples 

for TOC off-line measurements have been taken every 30 s during the cleaning cycle. The measurement 

results are included by symbols. Evidently, the results show large quantitative deviations, while qualitative 

agreement is obtained regarding the progression.   

4.3 Field operational tests 

Field operational tests were conducted at a Biopharmaceutical Contract Manufacturing company (project 

partner CMC Biologics A/S in Copenhagen, Denmark) using a simplified version of the experimental CIP 

pilot plant (see Section 2). The most important differences were the use of a slightly smaller vessel 

(Sartorius BBI Biostat D), single pass flow of cleaning liquids and that the separation unit was not included. 

Only rinse steps have been tested due to operational restrictions. The experiments were performed by 

initially filling the water storage tank with high purity water and heating the water up to approximately 20 

°C. Afterwards the vessel was contaminated with 100 g pure glycerol using a syringe. The cleaning 

process was started by pumping the high purity water into the spray ball and cleaning subsequently the 

vessel. The gear pump, which transported the liquid from the bottom of the vessel to the PATOV unit, was 

started with a delay of approximately 3 s to make sure that the sample point is filled with water. The signal 

of the PATOV unit was recorded with a data rate of approximately 3 data points per second. 

Some promising results have been obtained. One example is shown in Figure 5(a) (operating conditions: 

flowrate: 490 kg/h, temperature ~20 °C, vessel volume 150 L, spray ball small HAKE). The continuous 

lines represent the data of the PATOV unit and the symbols are the results off-line sample measurements. 

Again the off-line measurements show significant deviations, but a qualitative agreement regarding the 

progression. Certainly various errors have to be considered with the comparison, in particular differing 

sampling volumes and sampling positions. The PATOV unit works with a continuous pump flow and small 

dead volume. Each offline sample contained approximately 50 mL of cleaning liquid and it took 2 to 5 s to 

take each sample. Further examples are presented in Figure 5(b) (operating conditions: flowrate: 

1,370 kg/h, temperature ~20 °C, vessel volume 150 L, spray ball big HAKE type X1-1). Data of the PATOV 

unit are shown for two experiments conducted for identical parameters (flow rate, spray ball, temperature, 

type and amount of contamination, etc.). The curves show a significant difference, which can be expected 

due to diverging cleaning effects from the different start contaminations at the vessel surface. In fact the 

line integral matches in the order of about 94 %. 
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(a) (b) 

 

Figure 5: Rinse tests with glycerol as contaminant measured in single wavelength mode (a, b). The 

measurement results for TOC off-line samples are included by symbols (a). 

5. Summary and conclusions 

Based on mid-IR absorption the new developed PATOV unit offers quasi-continuous measurements with 

time resolutions down to one second. Bearing in mind that the time delay caused by the sampling system 

is in the order of 10 s, the PATOV unit enables online monitoring of CIP processes. The PATOV unit was 

successfully applied to experimental CIP process equipment. Calibration for glycerol was conducted with 

high linearity down to a detection limit of 20 ppm. First laboratory experiments and field operational tests 

show promising results. Valuable process information was gathered which could be used to significantly 

optimize the cleaning procedures resulting in increased process efficiency and quality. It has to be 

emphasized that the sampling position must be well chosen and short connection lines to the PATOV unit 

have to be established. Also, experimental data with regard to IR-QCL / TOC comparison have to be 

considered as preliminary. TOC measurement of off-line samples show large quantitative deviations - 

partly due to a difficult sampling situation at the plant site, therefore validation of the on-line data will be a 

very important target for future investigations. Extension of the analytical device for application to proteins 

is currently being processed by manufacturing a QCL light source for the protein spectral region. Improving 

the detection of lower concentrations and calibrating for other model contaminants and real-world 

contaminations will be objectives for further investigations. Future applications of the PATOV unit may also 

involve CIP of food processing plants. 
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