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The modification of Von Karman analogy for turbulent flow in channels of Plate Heat Exchangers (PHEs) is 
proposed. The resulting equation enables to calculate film heat transfer coefficients in PHE channel on a 
data of hydraulic resistance of the channel main heat transfer field, accounting for the influence of channel 
geometry, flow velocity and fluid properties. The comparison with experimental data for water flow in 
models of PHE channels main corrugated fields is presented. It is shown the good accuracy of prediction 
for film heat transfer coefficients. In the limiting case, where corrugations are parallel to plate axis, the 
results of calculations by proposed Equation are in excellent agreement with Equation published for 
straight tubes and channels by Gnielinski in 1975. The analysis of the Prandtl number influence on heat 
transfer is performed. It explains the difference of Pr powers, which varies from 0.6 to 0.3 at correlations 
reported in different experimental papers on heat transfer. The proposed Equation can be used for 
modelling of PHEs heat transfer performance in a wide range of different applications in process 
industries.

1. Introduction  
Plate Heat Exchangers (PHEs) are one of the efficient types of contemporary heat exchangers with 
intensified heat transfer. Construction and operation principles of PHEs are sufficiently well described in 
literature, see e.g. book by Wang et al. (2007). Their application in process industries save space and 
construction material, increase reliability and operability compare to conventional shell and tubes heat 
exchangers. The heat transfer processes in PHE takes place in the channels of complex geometry, formed 
by plates pressed from thin sheet metal. The form of plate corrugations strongly influences the heat and 
hydraulic performance and the whole heat transfer efficiency of the PHE. The investigations on heat 
transfer in PHE channels, available in literature, generalize data in form of empirical correlations. In these 
correlations the influence of fluid velocity and its properties is usually accounted by functions of Reynolds 
and Prandtl numbers. The forms of such functions and predicted by them character of this numbers 
influence are significantly varying and are specific for investigated channels geometries and the range of 
experimental conditions. 
To generalise data on heat transfer in PHE channels Martin (1996) have used Leveque analogy equation, 
which was initially proposed for laminar flow. Later same approach was employed by Dović et al. (2009) 
and gave reasonable accuracy in generalising heat transfer data of different authors. Arsenyeva et al. 
(2012) have used modification of Reynolds analogy which has proved fairly accurate in comparison with 
experimental data of different investigations in PHE channels. One of the problems with mentioned 
generalisation attempts is that they have fixed power at Prandtl number in correlations (0.33 in Leveque 
equation and 0.4 taken in modified Reynolds analogy). In fact the power at Prandtl number in empirical 
correlations for specific PHE channels by different authors vary in rather wide range, mostly from 0.3 to 
0.5.  Attempt to use Gnielinski Equation for PHE channels give discrepancies up to 300 % with 
experimental results. In present paper the modification of Von Karman analogy for PHE channels is 
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proposed, which can predict the heat transfer characteristics for turbulent flow based on the data for 
friction factor at the channel corrugated field in a wide range of Reynolds and Prandtl numbers Pr ≥1.   

2. Theoretical background  
One of the developments for Von Karman analogy in pipes was proposed by Lyon (1951). He has derived 
following equation: 
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where ξ = R/R0 is the relative distance from tube centre; ω = w/W is the relative velocity; w is the local 
velocity, m/s; W is the average velocity, m/s; ν is the kinematic viscosity, m2/s; νT is the turbulent viscosity 
(eddy diffusivity for momentum), m2/s; ε = λT/(cρ)/νT is the ratio of eddy diffusivities for heat and 
momentum; Pr is the Prandtl number Pr = cρν/λ; c is the specific heat, J/(kg·K); ρ is the density, kg/m3; λ is 
the heat conductivity, W/(m·K). 
As it was shown by Lyon (1951), Eq.(1) can be used regardless of the flow regime in pipe, with the proper 
estimation of velocity, νT and ε distributions. The method to use Eq.(1) for turbulent heat transfer in pipes 
based on Von Karman analogy is shown in a book by Kutateladze (1979). In our study the main 
assumptions of that method are taken in adaptation to turbulent flow in PHE channels. 
Let’s consider that the turbulent flow in direction perpendicular to PHE channel wall can be divided on 
viscous sub layer, buffer layer and turbulent main stream. For further analysis it is important to estimate 
the relative thickness of layers compare to the channel equivalent diameter De. For flows near smooth wall 
surface the distribution of velocities is closely related to shear stress on that wall τW. Using the coefficient 
of the total hydraulic resistance of the length unit of PHE channel ζS , for average shear stress on the wall it 
can be written: 
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where ψ is the share of pressure losses due to friction in total pressure loss at channel main corrugated 
field; Fx is the coefficient of surface area enlargement because of corrugations; ζτ is friction coefficient.  
The correlations to calculate ζS and ψ in a wide range of corrugations geometrical parameters were 
reported by Arsenyeva et al. (2012a). The estimation of wall shear stress for water flowing in PHE 
channels in another paper by Arsenyeva et al. (2012b) have shown that in effectively working PHEs the 
shear stress on the wall can change from 10 Pa to 100 Pa and even more. Introducing dimensionless 
distance from the wall η the thickness of buffer layer (including viscous sub layer) can be estimated for 
such conditions from following relation (assuming η=η2=30): 

0.5
W/ ( / )y =U T + 
/  (3) 

For τW = 10 Pa and water at 50 oC y2 = 0.17 mm diminishing to y2 = 0.05 mm for τW = 100 Pa. It is from 
about 4 % to 1 % of De. The thickness of viscous sub layer is about 5 times even smaller, as by data of 
different researchers its dimensionless upper boundary estimated from η1 = 5 to η1 = 7. Counting on such 
small thickness of both layers it can be concluded that in this region: 
1. Variable ξ is very close to 1, changing maximally from 0.9 to 1.  
2. Compare to such dimensions the surface of the plates forming PHE channels can be considered as 
smooth. To be pressed from sheet metal of even 0.4-0.5 mm it should have curvature radius at least 1-1.5 
mm not to jeopardize metal quality.  
3. Counting that on integration of the inner integral of Eq.(1) most of its parts are outside of considered 
layers, it can be assumed ω = 1 in this region. 
The right side of Eq.(1) can be presented as a sum of integrals corresponding to division of flow on 
turbulent main stream, buffer and viscous sub layers. Each of these integrals represents the influence on 
heat transfer of the specific region. As it is shown in literature (see eg. Lyon, 1951) for Pr >1 the main 
temperature change occurring in buffer and viscous sub layers. It becomes more close to the wall with 
increase of Prandtl number and the role of heat transfer in the main stream is diminishing. In view of this 
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fact the estimation of the integral corresponding to turbulent main stream can be made in assumption, that 
its value is approximately equal to that in a flow core of the smooth tube with the same shear stress on the 
wall and diameter equal to equivalent diameter of the channel. Assuming also that there ν<< νT, ω = 1 and 
that eddy diffusivities of heat and momentum in all flow are equal (ε=1) we can rewrite Eq.(1) as follows: 
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To estimate turbulent viscosity in the turbulent flow at the central part of the tube (0≤ξ≤ξ2) more accurate 
than ω = 1 distribution of velocity is needed. The logarithmic velocity profile can be used: 
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Here w* = (τW/ρ)1/2, m/s; C* is the constant; χ is the constant determined by experimental data for 
turbulent flow in tubes. Taking that the local shear stress is equal to turbulent shear stress and is 
proportional to distance from the centre τ = τW·ξ, the turbulent viscosity can be estimated as: 
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Accounting for Eqs.(2) and (3), in dimensionless form: 
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Substituting this Eq.(7) in first integral of Eq.(4) after integration gives for heat transfer in the main turbulent 
stream: 
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To estimate turbulent viscosity in the buffer layer of PHE channel (ξ2≤ξ≤ξ1) the logarithmic velocity profile 
correlation established in experiments for tubes and turbulent flows near flat surfaces can be used: 
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Here C*’and χ’ are the empirical constants for buffer layer; χ’ is the constant determined by experimental 
data for turbulent flow in tubes. Taking that the local shear stress τ in this layer is the sum of viscous and 
turbulent τT shear stresses and approximately equal wall shear stress, the turbulent viscosity can be 
estimated as follows: 
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Accounting for Eqs.(2) and (3), in dimensionless form: 
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Substituting this Eq.(7) into the second integral of Eq.(4) after integration gives for heat transfer in the 
buffer layer: 
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The third integral in Eq.(4) characterise the heat transfer in viscous sub layer. At Prandtl numbers much 
higher than unity the biggest temperature gradient occurs in this area and its parts closest to the wall. It 
requires accounting the influence of intruding from outer layers turbulent pulsations. Following Kutateladze 
(1979) it can be done by introducing following relation: 

3TT  UT Z /  (13) 

where β is the empirical proportionality coefficient, which value is estimated as β ≈ 0.03. According to 
Kutateladze (1979) in the 3rd integral of Eq.(4) for heat transfer another empirical coefficient βT should be 
used and this integral can be presented as follows: 
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The analytical expression for the integral of the function type 1/(a3+x3) are rather cumbersome and long. It 
is more convenient to perform numerical integration on a computer. The following values for the turbulent 
velocity profile parameters and empirical coefficients in equations were assumed: η2 = 30; η1 = 6.8; χ = 
0.37; χ’ = 0.2; βT = β/η1

2. As a result for calculation of Nusselt number the following expression was 
obtained: 
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Figure 1: The comparison of Nu(*)
 (solid line) calculated by Eq.(15) with experimental Nu(**): dashed lines 

corresponds to error ±15 %. 
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The above approximation of the integral solution deviate from numerical one not more than ±2 % for 
3≤Pr≤104 and not more than -8 % for Pr as low as 0.69. Accounting that for such low Pr the share of the 
viscous sub layer in total resistance to heat transfer becomes relatively smaller than of other parts, this 
approximation can be used to save computing time. 

3. Comparison with experiments and discussion of the results  
To validate Eq.(15) and check the limits of its application it should be compared to experimental data on 
heat transfer in channels of different geometrical form. On Figure 1 the experimental results for models of 
PHE channels of different corrugation size and inclination angle described in paper of Arsenyeva et al. 
(2012a) are compared with prediction by Eq.(15). The coefficient ζS and the share of pressure losses due 
to friction in total pressure loss were determined by generalized correlations presented in that paper. The 
Pr numbers are taken from experiments. The deviation of calculated Nu numbers from experimental ones 
not exceeded 15 % with mean squire error 6.5 %. 
The experiments presented in Figure1 were made with water as tested fluid in a limited range of Pr 
numbers from 1.9 to 7. The available in literature data on heat transfer in PHE channels are presented as 
empirical correlations with mentioning just the range of Pr numbers, with no data on Pr in individual 
experiments. Arsenyeva et al. (2012a) has presented generalised correlation for heat transfer based on 
modification of Reynolds analogy: 

 

Figure 2:  The comparison of Nu(10) (solid 
lines) calculated by Eq.(15) with calculated 
by Eq.(12) Nu(12) (dashed lines) for ν/νW=1 
and Pr=1: 1 – β=65o ; 2 - β=30o. 

Figure 3: The comparison of Eq.(15) with 
calculations by Gnielinski (1975) Equation 
and correlations with fixed Pr powers. 
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In this correlation the power of Pr number was fixed to 0.4 and comparison with quite a number of 
literature data was made by adjusting results accounting for the value of Pr power at correlation under 
comparison and the range of Pr specified in the papers. The discrepancies not exceeded 15%. In Figure 2 
is presented the comparison of calculations by Eqs.(15) and (17) at (ν/νW)=1 and Pr=1. The discrepancies 
not exceed 5 %. It can be concluded that Eq.(15) predicts the influence of corrugation geometry on heat 
transfer with practically same accuracy as Eq.(17). 
The accuracy of Eq.(15) in accounting of Prandtl number influence on heat transfer was estimated by 
comparison with calculations on Gnielinski (1975) Equation for flows inside straight smooth tubes: 
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Here ζ is the friction factor in smooth tube calculated by correlation: 

3 4 20.79 ln Re 1.64X �� / �  (19) 

To compare the calculations it was assumed ζs = ζ; Fx = 1; ψ = 1. The discrepancies of the results (see 
Figure 3) not exceed 6 %. The accuracy of Eq(18) suitable for practical applications in wide range of 
Prandtl numbers (0.5 ÷ 100,000) was confirmed in papers of Gnielinski (2009) and by authors of Perry’s 
Chemical Engineers Handbook (2008). The good agreement of the results by both Equations allows to 
recommend It for calculations in the same range of Prandtl numbers not only for smooth tubes but also for 
PHE channels.  
The influence of Prandtl number on heat transfer can be analysed using graphs in Figure 3. For fully 
developed turbulent flow (the curves for Re = 200,000 in Figure 3) for 1.5≤Pr≤12 the curves can be 
approximated by using Pr in power 0.4, as it is made in Nusselt Equation (see Kutateladze, 1979). In 
known Equation of Micheyev for this range of Pr the power 0.43 was used. When the Prandtl number 
becomes bigger than 20, the power 0.33 can be used, which is usually apply for laminar flow. It can be 
explained by shifting of the main part of thermal resistance to viscous sub layer - 3rd Integral in Eq(4). 
For relatively low Reynolds numbers (the curves for Re=3,000 in Figure 3, which correspond to transition 
flow regime in smooth tube) the power at Pr number can be taken as 0.33 for all regarded range of Prandtl 
numbers. It can be explained by lower intensity of turbulence in the main stream, which causes smaller 
influence on regions with effects of laminar heat transfer (buffer and viscous sub layers). Consequently, 
the influence of Prandtl number on heat transfer depends not only on its value, but also from Reynolds 
number characterizing the flow hydrodynamics in channel. The accurate prediction of Prandtl number 
influence in wide range of Prandtl and Reynolds numbers is not possible by introducing it as multiplier in 
some fixed power. The calculations must be made with Eq(15) accounting for different flow conditions and 
Reynolds number influence. 

4. Conclusions 
The proposed Eq.(15), based on Von Karman analogy of heat and momentum transfer, gives good 
prediction of the influence on heat transfer of Prandtl number in channels of PHEs. It allows extrapolation 
of empirical correlations obtained for a limited range of Prandtl numbers for wider applications and can be 
used for optimization of PHEs in different process conditions. 
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