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Good features are critical for both fault diagnosis and prognosis of gearbox. Most traditional features are 
effective only when the gearbox is under stationary operating condition. Some features which are modified 
based on the traditional features are no longer sensitive to load changes and remain sensitive to fault 
propagation. However, it is only permit the load changing in a very small range. In engineering 
applications, some machines usually work in a non-stationary operating condition; both speed and load are 
varying over a wide range (e.g. wind turbine). So, in order to solve this dilemma, we propose using the 
energy ratio between residual signal and deterministic periodic signal which is separated by 
autoregressive model as the condition indicator for fault diagnosis and prognosis. The effectiveness of this 
feature is demonstrated and compared to other traditional features using two run-to-failure data sets of 
gearbox collected in laboratory. 

1. Introduction  
Condition-based maintenance (CBM) has attracted considerable attention world-wide in the past three 
decades. Fault diagnosis and prognosis which are important aspects in CBM have not been sufficiently 
studied. Gearboxes are one of the most common parts of machinery equipment as the necessity 
connection and power transmission. Due to its complex structure and severe working environment, faults 
are easy to appear and may take a heavy toll. So, detecting the incipient fault earlier and predicting the 
remaining useful life are crucial preventing the mechanical system from failure and to make sure that the 
production operation can reach maximum capacity. 
The features of gearbox used in fault diagnosis and prognosis are different. Fault diagnosis of gearbox 
needs the features which can be used to classify the different fault modes (such as bearing fault, gear 
fault, or shaft fault). But the fault prognosis needs the features which can reflect the degradation process of 
gearbox. The good features are very critical to the effect of fault diagnosis and prognosis. Many condition 
indicators, which are based on statistical moments of time synchronous average (TSA) and its derivatives 
(difference and residual signals) were previously proposed. They are ER, FM0, FM4, NA4, NB4, M6A, and 
M8A etc. which definitions and detailed information can be found in (Samuel and Pines, 2005). For the 
bearings in gearbox, the major source which masks the relatively weak signals of bearing is discrete 
frequency noise from gears. Compared to the bearing signal, these signals produced by gears are quite 
strong even no faults. Therefore, it will be benefit to separate the bearing signals from discrete frequency 
noise before proceeding with bearing diagnostic analysis. Wang and Wong (2002) presented a more 
flexible way of removing the discrete frequency noise (deterministic signals) using linear prediction. 
Chaturvedi and Thomas (1982) proposed to separate the gear and bearing signals using adaptive noise 
cancellation (ANC). Then, Antoni and Randall (2004) developed the self-adaptive noise cancellation 
(SANC) which is more efficient than ANC demonstrated using both simulation and real signals. Even 
removal of discrete frequency noise using above mentioned methods, the bearing signal still be masked by 
other noise. Because of the influence of transmission path, the bearing signal will be less impulsive than at 
the source. So, Sawalhi et al. (2007) proposed using minimum entropy deconvolution (MED) to remove the 
effect of the transmission path. This will enhance the impulse signal produced by fault that enabled the 
fault found easily. Then, we can use the spectral kurtosis (Antoni, 2006) which can select the optimum 
band for filtering and demodulation and envelope analysis to determine fault characteristic frequencies. 
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Recently, Klein et al. (2011a) proposed a new method separating bearing signals from other components 
in gearbox through a few stages of resampling and removal of the TSA of the raw signal. Then, Klein et al. 
(2011b) combined this method with Mahalanobis distance to diagnose the bearing fault automatically. 
However, all the methods mentioned above rely on being able to analyze signals recorded under 
stationary operating conditions. When speed varies relative slowly, it can be compensated by order 
tracking. When speed varies rapidly, it is likely to be over a smaller range and associated with rapid load 
variations. Under vary speed and load condition, how to extract the features which can identify the different 
fault modes and fault severities of a same fault mode is the problem that needs to investigate. For fault 
prognosis, some traditional features can reflect the degradation process of gearbox under stationary 
operating condition. But under non-stationary operating condition, all the traditional features can not reflect 
the degradation process of gearbox. A good degradation feature must possess a trend that reflects the 
deteriorating condition of the gearbox. In engineering application, many machines (such as wind turbine) 
work under vary speed and load. So, we must investigate the features which can possess a trend that 
reflect the degradation under this condition. Dempsey and Zakrajsek (2001) proposed that the calculation 
of NA4 can be modified to minimize the load effects. Results indicated the modified NA4 was no longer 
sensitive to load changes and also can reflect the pitting damage of gear. However, in the experiment, only 
10 percent load change was considered. Li et al. (2009) proposed a new method using energy ratio to 
reflect bearing’s degradation under abnormal operating conditions which the bearing spins on the shaft. 
The energy ratio is the ratio between residual signal and deterministic periodic signal which is separated 
using auto-regressive model. Inspired by this thought, we can verify if this method can be used to reflect 
the degradation of gear under non-stationary operating condition and compared to other features 
described in (Samuel and Pines, 2005).  

2. Autoregressive model based feature extraction 
The deterministic part of a signal can be perfectly predictable based on the infinite past. This means that a 
discrete time series can be represented by a linear combination of a certain number of samples in the 
immediate past. And then, this model can be used to predict the next value of this series. It can be 
described by a linear regression on itself plus a noise term: 
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Where the e[n] is a Gaussian white noise with zeros mean and variance 2 and the model order is p. The 
parameters estimation of AR model only involves linear equations and the estimating methods have been 
established yet, such as Levinson-Durbin recursion and Burg algorithm. 
Vibration signal collected from gearbox with gear fault or bearing fault consists of the deterministic periodic 
signal and the random signal. The random components consist of the impulse generated by the localized 
fault in gear or bearing, and the random noise. In this paper, we only consider the gear fault. If the gear is 
normal, the residual signal separated by AR model only represents the prediction error of the AR model. 
However, when a local fault appears in the gear, the impulse signal produced by fault will not be well 
predicted by the AR model generated by deterministic signal. So, the AR residual signal of a fault gear 
mainly contains the impulsive signal produced by fault. When the gear fault severe gradually with time, the 
energy of the residual signal will increase but the deterministic periodic signal generated by the inherent 
structure of gearbox will remain same. Therefore, the energy ratio between the residual signal and 
deterministic periodic signal will increase. So, the energy ratio can indicate the damage level of the tested 
gear. Furthermore, when the speed and load varies, both the energies of these two signal component will 
change in the same direction. This property will make this feature more robust to the varying operating 
conditions. This feature was first proposed by Li et al. (2009) and applied to bearing fault prognosis. Wang 
and Wong (2002) used AR model for gear fault diagnosis comparing the residual signal of fault condition 
with normal. If energy ratio can be used to indicate the severe of gear fault need further investigating. 

3. Experimental setup 
In order to verify the feature mentioned in section 2, two run-to-failure (RTF) data sets of gearbox are 
collected. Figure 1 (a) shows the experimental system used in this paper. The system includes a gearbox, 
a 4kw three phase asynchronous motor for driving the gearbox, and a magnetic power brake for loading. 
The motor rotating speed is controlled by an electromagnetic speed-adjustable motor, which allows the 
tested gear to operate under various speeds. The load is provided by the magnetic powder brake 
connected to the output shaft and the torque can be adjusted by a brake controller. The gearbox structure 
and sensor location are depicted in Figure 1 (b).  
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Figure 1: (a) Test-rig of gearbox, (b) Gearbox structure and sensor location 

 

Figure 2: (a) Rotation speed of data set 1, (b) Load of data set 1 

 

Figure 3: (a) Rotation speed of data set 2, (b) Load of data set 2 

For the experiment 1, the rotation speed of input shaft is about 1200rpm and the torque is about 15N m. 
For this experiment, the operating condition is relative stationary. The sampling frequency is 20 kHz lasting 
6 second. The rotation speed and load of experiment 1 are depicted in Figure 2. For the experiment 2, the 
rotation speed of input shaft is changed in a wide range by the speed controller. The load is also changed 
by adjust the current which control the magnetic powder brake. The sampling frequency is 20 kHz lasting 2 
second. The rotation speed and load of experiment 2 are depicted in Figure 3. The gearbox’s failure time 
of experiment 1 and 2 are 548 hours and 1068.75 hours respective. The main fault mode of these two 
experiments is wear of tooth face. For experiment 1, the gear which has 81 teeth is the fault gear. For 
experiment 2, the gear which has 18 teeth is the fault gear. 
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4. Feature extraction for diagnosis and prognosis  
The statistical condition indicators (ER, FM0, FM4, NA4, NB4, M6A, and M8A etc.) mentioned in section 1 
can reflect the gear fault only when the operating condition is relatively stationary. If the operating 
condition like speed and load change with time in a very wide range, these condition indicators will be 
ineffective. For fault diagnosis, we can use signal sections selected in a short time. These signal sections 
are relatively stationary. So, we can find the fault characteristic frequencies through existing signal 
processing method. However, we do not know if the faults are propagating with time. For fault prognosis, 
we must extract the features which have consistent degradation trend. The AR model described in section 
2 can be used to extract the impulsive signal produced by gear fault from the original signal. In this section, 
the energy ratio between residual signal and deterministic periodic signal will be used as the robust 
prognosis indictor under non-stationary operating condition. The AR based energy ratio can be defined as 
follow: 

 

Figure 4: (a) FM4 values of experiment 1, (b) FM4* values of experimental 1 

 

Figure 5: M6 values of experiment 1, (b) M6* values of experiment 1 

 

Figure 6: FM4 values of experiment 2, (b) FM4* values of experiment 2 
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Figure 7: M6 values of experiment 2, (b) M6* values of experiment 2 

 

Figure 8: Traditional energy ratio of experiment 1, (b) Traditional energy ratio of experiment 2 

 

Figure 9: AR based energy ratio of experiment 1, (b) AR based energy ratio of experiment 2 
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Where, R is the residual signal consisting of N elements and D is the deterministic periodic signal also 
consisting of N elements.  
In order to demonstrate the effectiveness of AR based energy ratio, we compared it to five traditional 
features named FM4, FM4*, M6, M6*, and ER (traditional energy ratio) through analyzing the two run-to-
failure data sets. The results are illustrated in Figure 4, 5, 6, 7, 8 and 9. 
From above figures, we can find that the effectiveness of traditional energy ratio is better than the features 
FM4, FM4*, M6 and M6* under relative stationary operating condition. However, when the speed and load 
change over a wide range, the traditional energy is also less effective. On the contrary, AR based energy 
ratio is effective both in stationary and non-stationary condition. For experiment 1, these features are 
extracted from signals collected by sensor 2 because its outperform others. For experiment 2, these 
features are extracted from signals collected by sensor 1 for the same reason as experiment 1. 
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5. Discussion 
(1) In this paper, the AR based energy ratio is directly extracted from original vibration signals and it is 
different from other papers which the energy ratio is extracted from TSA signals. Because the AR based 
energy ratio extracted from TSA can not reflect the degradation process. 
(2) The order of AR model is 30 which is determined by Akaike Information Criterion (AIC) based on the 
first acquired vibration signal. Under non-stationary operating condition, all the AR models are constructed 
using a common model order that is optimal for a given operating condition but may not be optimal for 
other operating conditions. In the application, we find that the optimal orders of the AR models under 
different operating conditions do not vary a great deal, and a fixed order can be used effectively. For every 
time point, we use different AR(30) to extract the residual signal and calculate the energy ratio rather than 
the only one model constructed using first acquired vibration signal. This is different from AR based gear 
fault diagnosis in (Wang and Wong, 2002).  
(3) In (Li et al., 2009), only bearing fault propagation is considered and the residual signal only denotes the 
impulsive signal produced by bearing fault. In (Wang and Wong, 2002), only gear fault is considered which 
the residual signal only denotes the impulsive signal produced by gear fault.  If both the bearing and gear 
are damaged, the residual signal will contains the impulsive signal produced by these two parts. So, in this 
case, we can’t distinguish the bearing and gear fault only using AR based energy ratio.  
(4) For intelligent fault diagnosis of gearbox under non-stationary condition, we need more features which 
are insensitive to operating condition. The method of AR based energy ratio gives us a good idea. We can 
extract a series features based on the deterministic periodic signal and residual signal. Also, we can find 
other better methods which can separate deterministic periodic signal and residual signal. Through post-
processing these signals, we can obtain some other features which can be used for fault diagnosis and 
prognosis.  

6. Conclusion 
A new feature named energy ratio based on AR model is proposed for fault diagnosis and prognosis of 
gearbox under non-stationary operating condition. The effectiveness of this feature is verified using two 
run-to-failure data sets of gearbox. One is proceeding under relative stationary operating condition. The 
other is proceeding under non-stationary operating condition. This feature is effective under both stationary 
and non-stationary operating condition and compared to some traditional features. 
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