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The problem of durability of fuel cell technology is central for its spreading and commercialization. There is 
therefore a growing need to build accurate diagnosis tools which can give the operating state of the fuel 
cell during their use. When supervised machine learning approaches are used to build such diagnosis 
tools, they generally require a large amount of labeled data. Collection and annotation of data can be 
either difficult to perform or time consuming. In this paper, authors are interested in the monitoring of fuel 
cells in an unsupervised framework, meaning that no labels are required to learn the diagnosis model. The 
aim is to build a monitoring tool able to easily visualize the State Of Health of full cells from 
electrochemical impedance spectroscopy measures, showing thus its evolution from fault free case 
("normal" behaviour) to defective classes such as drying or flooding. The proposed approach is based on 
Self Organizing Maps (SOM) which have shown their performance to solve fault detection and prediction in 
many industrial systems. By automatically visualizing the data into a two-dimensional space, the 
interpretation of the results have become easy and instinctive. The approach also allows the clustering of 
the data into different groups of classes, thus enabling the classification of new observations. Experimental 
results carried out on real data sets have shown the efficiency of the proposed approach with respect to 
standard supervised and unsupervised classification approaches. 

1. Introduction 
The problem of durability of fuel cell technology is central for its spreading and commercialization. There is 
therefore a growing need to build accurate diagnosis tools which can give the operating state of the fuel 
cell during their use. Various diagnosis approaches have been proposed for that purpose. These various 
approaches include model-based approaches (Burford et al. 2004) and gray or black-box model 
approaches using fuzzy logic (Hissel et al, 2004), neural networks (Nitsche et al, 2004). Non-parametric 
identification by Markov parameters have also been presented (Tsujioku et al, 2004), a fuzzy-clustering-
based FC diagnosis approach (Hissel et al, 2007), as well as a diagnosis approach using bayesian 
networks (Wang, et al, 2012). As for pattern-recognition-based method authors have proposed in a 
previous study a supervised machine learning approach for FC diagnosis using Electrochemical 
Impedance Spectroscopy (EIS ) measurements. When using supervised machine learning approaches for 
diagnosis tools, it is required to have labeled data, i.e. an a priori knowledge about the intrinsic structure of 
the dataset must be known. Collection and annotation of these labels can be difficult to perform and time 
consuming, and sometimes the possibility of mislabeling the data is non-negligible. Therefore, it might be 
an interesting idea to consider the unsupervised learning framework to handle and study data. In this 
paper, the state-of-health monitoring of PEM fuel cells using an unsupervised learning method is 
investigated. In unsupervised learning problems, the main goal when considering our task is to discover 
groups or similarities in the data set and no label is required to learn the diagnosis model. The aim here is 
to build a monitoring tool able to easily visualize the health of full cells from electrochemical impedance 
spectroscopy measures, showing thus its evolution from fault free case ("regular" behaviour) to defective 
classes such as drying or flooding. The proposed approach is based on Self Organizing Maps (SOM) 
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which have shown their performance to solve fault detection and prediction in many industrial systems 
such as vehicle cooling system (Svensson et al, 2008) or aircraft engine fleet monitoring (Come et al, 
2010. By automatically visualizing the data into a two-dimensional space, the interpretation of the results 
have become easy and instinctive.
The paper is organized as follows. First of all, in section 2, the database which is used for diagnosis is 
presented. Then in section 3, the self-organizing maps will be briefly introduced. And finally in section 4, 
the results applying the Self-Organizing Maps will be presented and discussed. 

2. Database  
The database that was used in the presented work was built after experimentations on a 20-cell PEMFC 
stack which has been operated under various operating conditions, comparable to real-life conditions. The 
stack was assembled with commercial perfluorosulfonic Membrane-Electrodes Assemblies (MEA) graphite 
bipolar plates and electrodes with 100cm² area. The experiments and EIS measurements have been 
performed using a 10kW test bench developed in-lab (Wasterlain et al, 2009). 
The experimentally generated operating conditions were realized using a 2-level- fractional experimental 
design. This experimental design deals with the impact of five factors on the operating conditions:  

• anodic Relative Humidity (RHa) [ 35 %, 75 %] 
• cathodic Relative Humidity (RHc) [ 35 %, 75 %] 
• anodic Stoichiometric Factor (FSA) [1.8, 3.0] 
• the cathodic Stoichiometric Factor [2, 3] and 
• the FC temperature. 

The stack is then operated under these various conditions and faults from drying to flooding are triggered 
by varying one or several parameters. 11 experimental points have been considered during the 
experiments where EIS spectra were measured (Wasterlain et al, 2009;).. The current density was fixed to 
0.5 A/cm², The whole experiments have enabled us to gather a database of EIS spectra, as presented in 
Table 1. 

Table 1: Experimental points used to generate the dataset 

Test Nb. 1 2 3 4 5 6 7 8 9 10 11 
RHa (%) 35 35 35 35 35 75 75 75 75 75 75 
RHc (%) 35 75 75 75 75 35 35 75 75 75 75 
FSa 3 1.8 1.8 3 3 1.8 3 1.8 1.8 3 3
FSc 3 1.8 1.8 3 3 1.8 3 1.8 1.8 3 3
T (°C) 60 60 80 80 60 60 80 80 60 60 80 
Nb of EIS 20 21 21 21 21 21 21 21 21 21 21 

As a pre-processing step, a feature extraction was realized on the data. This step was achieved because 
of its potential benefits on the performances of the diagnosis tools. These include:  
- Facilitating data visualization and understanding. 
- Reducing computational times 
- Defying the curse of dimensionality. 
The extraction approach chosen was to take the real and imaginary parts of the spectra at the following 
frequencies : 5 kHz ( Re(f = 5 KHz), Im(f = 5 kHz)), 500 Hz ( Re(f = 500 Hz), Im(f = 500 Hz)), 50 Hz ( Re(f = 50 Hz),
Im(f = 50 Hz)), 5 Hz ( Re(f = 5 Hz), Im(f = 5 Hz)),  77.5 mHz( Re(f = 77.5 mHz), Im(f = 77.5 mHz)), 50 mHz ( Re(f = 50 mHz),
Im(f = 50 mHz)), (12 features) 
Therefore, for the following clustering step, the database is made up of 12 input variables. 

3. SOM methodology 
A self organizing map (SOM) is a type of Artificial Neural Network (ANN) that is trained within an 
unsupervised learning framework (no class labels are required). SOM are well-known data mining tools 
which are frequently used to project high-dimensional data into a low dimensional space that is supposed 
well suited to capture the structure of the original data. Therefore the map that results to this training 
shows the different clusters that are present in the data. Like most Artificial Neural Networks, SOMs 
operate in two modes: training and mapping. 
A Self-Organizing Map (SOM) consists of neurons (or units) on a regular low-dimensional grid which 
defines a neighborhood relation between the prototypes. Each unit t of the grid is represented by a N-
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dimensional weight vector or prototype vector , where N is equal to the dimension of 
the input vectors. The neurons are connected to adjacent neurons by a neighborhood relation, which 
dictates the topology or structure of the map. Self-organization means that after convergence prototypes 
which are close in the grid will also be close in the original data space. New data can be projected after 
learning of the SOM by assigning them to the location on the map of the best matching unit (BMU): the 
closest prototype vector to the data point. The SOM training algorithm resembles vector quantization 
algorithms such as k-means (Webb, 2011). The important distinction is that in addition to the best 
matching unit vector, also its topological neighbors on the map are updated: the region around the best 
matching unit is stretched towards. The aim is to find a suitable set of weights for each unit so that the 
network estimates the distribution of the input data.  
The learning rule responsible for finding a suitable set of weights iterates the two following steps:  
Competitive step: given an input vector , the distance between unit t of the SOM and the 
input vector is calculated by the Euclidian metric. The unit with the smallest distance is the one which 
closely represents the current input, and thus is considered the winner or the best matching unit (BMU) for 
that input:

(1)

Cooperative step: the weights of the winning unit are moved towards the input. In addition, the winning 
unit's neighbors are also moved in this direction, but by an amount that decays with the distance of the 
neighbors form the winning unit. The update rule for the weight vector of unit is given by the following: 

 (2) 

where t denotes time,  is the learning rate and  is a neighborhood kernel centered on the 
winner unit. A Gaussian kernel is usually chosen: 

(3)

where and  are the positions the BMU and unit i respectively on the map,  the neighborhood 
radius. Both the radius and the neighborhood rate decrease monotonically with time (Vesanto, 2000). 
From the initialization phase to the end of the training, the above process is iterated for each input vector 
of the data set and this, results in a competition between different regions of the input space for units of the 
map. Dense regions of the input space will tend to attract more units than sparse ones, with the distribution 
of units in the weight space ultimately reflecting the distribution of the input data in the input space. 
Neighborhood learning also encourages topology preservation, meaning that the map end up close in the 
weight space, as well. 

4. Results and discussion 
4.1 Data clusters 
The first experiment aims at demonstrating the ability of SOM to perform a clustering of the dataset. The 
aim is to identify in the obtained SOM, groups of clusters where each cluster corresponds to an operating 
class. The training of the SOM was performed using the Matlab SOM toolbox. The learning was done 
under the default setting: the learning algorithm was the batch algorithm with linear initialization.  
Figures 1 presents the results obtained with the classical SOM. The topology of the map was fixed 
manually: it contains 6 x 12 neurons. And therefore, if each map unit is initially considered as a cluster, it 
results in a 72 class-clustering. A more in-depth analysis of the map could be done using the U-(matrix) 
(Ultsch, 2003). The U-matrix represents the average distance between the map unit and its closest 
neighbor; it is subsequently an interesting method for the identification of groups of clusters among the 
map unit. The scale on the left side of the U-matrix gives information about the distances in the U-matrix. 
In Figure 1, the redder colors show long distances between the nodes whereas the bluer colors show 
small distances between the nodes, therefore establishing clusters in the dataset. These figures exhibit 3 
or 4 main clusters.  
In order to validate the visual assessment, the validation of clusters can be done through criteria such as 
compactness (members of each clusters should be as close to each other as possible) and separation (the 
clusters should be widely separated) (Legány et al, 2006). Six validity indexes were tested (see Figure 2), 
corresponding to the some of the most widely used indices. As it can be seen in Figure 2, this seems to 
indicate that the number of clusters in the dataset, as indicated in the SOM is likely to be 3 or 4. 
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Figure 1: U-matrix obtained when training a SOM on the FC data 

Figure 2: Evaluation of different cluster validity indices to automatically determine the number of clusters 

4.2 Data labeling 
In this second experiment, the SOM is used to identify mislabeled data. With the experts' advices, 
preliminary labels were associated with data points given the prior knowledge we have on the operating 
conditions. These preliminary classes or fault labels are presented in Figure 3. This figure shows the 
distribution of the data on the map according to this fault labeling. A part of the data seems to be 
mislabeled. For example, some data labeled as "minor drying" are clustered with data labeled as 
"flooding". Moreover, it seems that the gravity of the fault grows with the value of the principal components. 
With the assumption these observations and the assumption that data generated with similar fault 
operating conditions will belong to the same cluster, labels changes were therefore made accordingly. The 
new distribution of labels in the data set and on the map is presented in Table 2 and Figure 4. This shows 
that SOM can be considered as useful tools for visualizing high dimensional data. 
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Figure 3: The labelling of the data as initially done by the experts. A group of data point labelled as a 
drying fault are clustered with data points whose operating conditions are identified as flooding  

Table 2:  Table of different labels of the data, with the fault gravity 

Fault mode                        Drying Fault-free       Flooding 
gravity moderate 

(Mod.D) 
minor 

(Min.D) 
moderate 
(Mod.F) 

minor 
(Min.F)

slight 
(Sli.F)

AssociatedTest Number 1, 6 7 3 2, 4, 8, 10 5, 9 11 

Figure 4: The labelling of the data as finally obtained after the changes of the labels. The modifications 
were done so that the "new" label corresponds to the labels of its neighbours by a majority vote. 

4.3 Fault monitoring 
Finally, the SOM has been used for the monitoring of the fuel cell. Two points of the data set, that 
represent the measurement of the FC operations from flooding conditions to drying conditions are 
presented on the map. In Figure 5, it is possible to see how the point evolves in the map. The point 
evolves from top to down, which corresponds to the evolution from flooding operating conditions to drying 
conditions. 

5. Conclusion 
In this paper, a non-supervised approach based on Self Organizing Maps is used to monitor fuel cell. We 
have presented how SOM can be used to visually identify the main clusters in the dataset, then how it 
could be used to correct eventual expert data mislabeling. Finally experiments are carried out to show that 
self-organizing map could be used to monitor the State-Of-Health of the fuel cell. This presents an 
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alternative for supervised learning if the collecting of labels could not be done under difficult to obtain or is 
time consuming. 

Figure 5: the different labels of the map prototype as learned during the training phase. On the right-hand 
side, we have the labels on the units after the modification of the mislabelled data 
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