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We develop a novel method aimed at estimating the relationship between a drifting process parameter and 
some operational variables of a component under fault. The method is to be used for condition monitoring 
and tracking, and it is based on Gaussian Process (GP) models, which are widely used Bayesian models 
for nonlinear regression. These models provide great flexibility for regression and the capability of 
quantifying uncertainty in the form of a posterior predictive distribution. Their main limitation is the difficulty 
to handle large data sets. For this reason, over the past decade different approximations have been 
proposed to reduce the computational burden, either global or local. For global approximations of time-
dependent data, a proper selection of the set of inducing points is crucial for maintaining accuracy and 
effectiveness, while also reducing the computational costs. In this paper, we propose a strategy to select 
the inducing points for nonlinear regression of time-dependent data: the algorithm adaptively computes the 
inducing points as sparse means over moving time-windows. The time windows are selected in order to 
maximize the similarity between the target variable and the inputs within each window. We finally combine 
the sparse functional learning of inducing point positions with an approximate GP model for nonlinear 
regression, with the aim of estimating the relationship between the target variable and the inputs. The 
effectiveness of the proposed strategy is shown on a case study with real data from a Nuclear Power Plant 
(NPP) component. 

1. Introduction 
In industry, methods are needed for detecting, diagnosing and controlling abnormal events in a timely and 
accurate manner (Venkatasubramanian, 2005). These methods can be either based on physical models, 
or data-driven (Zio et al., 2012): the latter are particularly suited to cases in which the monitoring of the 
plant provides large amounts of measured data (Ma and Jiang, 2011); physical models, instead, are built 
and solved by simplification of the true physical relations, and in most cases this cannot timely provide the 
plant operators with a sufficiently precise and reliable detection and diagnostics of the plant situation (see 
the nice review in Zio, 2012). 
Among data-driven methods for nonlinear regression, GP models are becoming popular and widely used, 
both for nonlinear regression and classification purposes. At the same time, they offer a flexible and 
powerful tool for prediction. A GP is a nonparametric technique, and as such the width of GP-based 
Prediction Intervals (PIs) grows in regions of the space far from the training set, where the uncertainty 
associated to the interpolating function is higher (Snelson, 2007). This makes the inspection of the input 
space a relevant aspect of the analysis, since a bad positioning of the input data can highly affect the 
prediction. Moreover, like all nonparametric techniques, the complexity of the model grows as more 
training data points are used (Snelson, 2007). Hence, the computational burden associated to GP is 
relevant when used for complex problems.  
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Concerning the computational aspects, the training cost for a GP has  complexity, where  is the 
number of training data points (Storlie et al., 2009). This is due to the inversion of the  covariance 
matrix. Several techniques have been recently proposed to reduce this complexity to , where  is 
a user-chosen number smaller than . These sparse approximations to GP can be either global or local 
(Snelson and Ghahramani, 2006): the former try to summarize all training data via a set of 
representative “inducing points” (or “pseudo-inputs”, since these are the only inputs employed for 
prediction purposes). In the case of local approximations, instead,  local experts account for the 
prediction in different portions of the feature space. Both the selection of inducing points and the feature 
space partitioning are optimized together with the hyperparameters during training. 
Global sparse approximations are most suited for the case of time-dependent data (Snelson and 
Ghahramani, 2007). In this paper, we thus focus on global approximations and develop a method for 
performing a careful selection of the inducing points, based on a functional similarity approach. The 
inducing points are selected by dividing the horizon of interest into moving windows (initially equal), and by 
iteratively updating these windows with the goal of maximizing the within-window similarity between the 
target variable and the inputs. This method is then combined with a sparse GP approach to perform the 
prediction of a drifting parameter of a component under fault. 
The paper is structured as follows. Section 2 gives the details of the sparse approximate GP model for 
nonlinear regression with the functional selection of inducing points. In Section 3 an illustrative case study 
is introduced, concerning the condition monitoring of a NPP component under fault. Finally, in Section 4 
some conclusions and future directions of research are given.  

2. Gaussian Processes for Regression 
GPs are a flexible, simple to implement and fully probabilistic approach to nonlinear regression. Consider 
the following nonlinear regression model 

          (1) 

where the data set  is the training set,  is the latent nonlinear function describing 
the link between the input variables  and the output variable , and  is an independent additive 
noise term assumed with zero mean and Gaussian. 
In the GP approach to regression (for a deep mathematical description of GP models, see the nice 
dissertation in Rasmussen and Williams, 2006), we put ourselves in a Bayesian framework assuming a 
Gaussian prior 

           (2) 

where  and  is the  covariance matrix such that .
If we consider the test point  with associated output , and call , then in a full Bayesian 
approach to inference, we would put a joint GP prior on the training and test inputs, and then use the 
Bayes theorem to combine with the likelihood. This would lead to the following formulation 

           (3) 

which finally allows to obtain the following predictive distribution 

          (4) 

where in (4) we used the shortened notation  to indicate the matrix such that , and 
the same notation applies also to ,  and . Note that the variance of the predictive distribution in (4) 
needs a  computational effort, due to the presence of the training covariance matrix . Hence, the 
computation of (4) is unfeasible in most high-dimensional applicative contexts, and we should introduce 
some proper approximations. 

2.1 Sparse Gaussian Process approximation 
The aim of the sparse approximation to GP regression is to modify the joint training and testing posterior 
distribution in (3), such that the resulting predictive distribution in (4) can be efficiently computed 
(Quinonero Candela and Rasmussen, 2005. 
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We, thus, introduce a set of inducing variables , a set of latent variables which correspond to 
the evaluations of the GP at a set of given locations , also called inducing points. The sparse 
approximation consists in assuming  and  conditionally independent given , which means 

.           (5) 

The reason why  are named inducing points is that they “induce” the dependency between the 
training and the testing set, since  and  can only communicate through the evaluations . The exact 
expressions of the two conditionals are 

         (6a) 
         (6b) 

The two approximated posterior distributions (6a) and (6b) are two noise-free versions of the predictive (4), 
with  playing the role of noise-free observations. This fact gives the idea of the crucial role played by the 
inducing points in the sparse approximation to GP regression: the set of inducing points should be capable 
of capturing all the relevant information contained in the inputs and, thus, to be transmitted to the output. 
Moreover, since the set of inducing points has dimension , the computational cost of the GP regression 
is reduced to  thanks to the sparse approximation. 

2.2 Functional Learning of Inducing Points 
The crucial point of the sparse GP approximation is, thus, the selection of the set of inducing points 

. In the present paper, a functional similarity approach is proposed, which exploits the time 
dependent nature of the data. Till now, we have considered a quite general nonlinear regression problem. 
However, in the condition monitoring applications of interest to us, the observations included in the training 
set (both the input and the output variables) have the characteristic of being time-dependent. Hence, we 
assume to observe both the inputs and the outputs on a spaced grid of  time instances , belonging 
to the time period .
Let us first introduce some notation related to our time-dependent scenario. The observations of the input 
variables in the training set can be written as  for ; analogously, the 
observations of the output variable can be written as . Finally, we will use 
the shortened notation  referring to the selection  of the vector  such that ; the 
same notation can be applied also to the input variables, in the corresponding multivariate setting. 
To find the optimal set of inducing points, we need to introduce a  dimensional set of time windows, each 
of them describing the region of influence of each inducing point. Then, the proposed strategy iteratively 
proceeds along three basic steps: for each time window, compute the weighting function maximizing the 
input-output similarity within the window; update the inducing points as weighted averages of the variables, 
given the previously computed weighting functions; finally, modify the time windows by setting the 
computed inducing points to be their centroid. 
This procedure is rigorously described in the following scheme: 

1. Initialize the  dimensional set of time windows  to a uniform partition of the interval 
, i.e. ,  and . Set 

.
2. Set , and perform the following steps: 

Step 1. Given the set of time windows  at the previous iteration, find the set of 
weighting functions  such that, 

          (7) 

where we shortly indicated with  the set , and where the weighted covariance function 
in (7) has the following expression 

          (8) 

Step 2. Given the set of optimal weighting functions  at the current iteration, update the 
set of inducing points by computing, 

909



          (9) 

Equation (9) means that the inducing points are computed as weighted averages of the inputs 
within the corresponding time window, a strategy which resembles the Auto-Associative Kernel 
Regression (AAKR) approach to prediction (see Baraldi et al., 2010). 
Step 3. Given the set of optimal weighting functions  at the current iteration, update the 
time windows such that 

                      (10) 

and  is the centroid of .

3. Repeat 2. until the matrix norm of  is smaller than a predefined 
tolerance .

The convergence of the procedure to a set of optimal inducing points is ensured by the well-posedness of 
the optimization problem (7) and by the compactness of the involved functional spaces.  

3. Case Study 
The proposed sparse GP regression method, with the associated inducing points selection strategy, is put 
into action in a case study concerning a set of real data from the Reactor Coolant Pump (RCP) of a NPP. 
In the following subsection, we describe the data and illustrate the pre-processing steps; in the subsequent 
one, we present the results of our approximate GP regression approach. 

3.1 Data Description 
The dataset includes the measurements of the RCP of a NPP, with increasing leak flow in the first seal (a 
variable included among the considered parameters). The dataset contains the values of seventeen 
different variables, hourly recorded along a period of 406 d, giving about 9200 time instances. The 
variables whose measurements concern sensors inside the RCP are nine, and they are hereafter called 
internal variables; the other eight are called external variables. The description of all the internal and 
external variables and their physical meanings are given in Table 1. In the following, the nine internal 
variables will be denoted with  and the eight external ones with . The target of interest for 
the prediction purposes is the variable . For , we observe the fault, manifested by the start 
of a drift in the leak flow variable. We note that the data need pre-processing, because there are many 
outliers (bad sensor recordings) and missing observations (absence of sensors recording). 

Table 1:  Physical meaning of each internal (left columns) and external (right columns) variable. 

Variable name Physical meaning Variable name Physical meaning 
T cold leg loop 1 [WR] T by-pass hot leg loop 3 
T water seal #1 051PO T seal injection line 
T stator winding motor 051PO P primary amount file B [GL] 
T motor lower bearing 051PO Debit general file A 
T lower thrust bearing 051PO Debit general file B 
T motor upper bearing 051PO T aval exchanges file A 
T motor upper thrust bearing
051PO 

T aval exchanges file B 

Flow seal injection supply
RCP051PO 

Debit refrigeration GMPP 
051PO 

Seal leak flow #1 RCP051PO

For details on the pre-processing steps of the analysis (outlier elimination, missing data reconstruction and 
feature selection), we refer to Liu et al. (2013). In particular, the missing data reconstruction has been 
carried out via a local polynomial regression technique, while in the feature selection step we have 
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investigated the correlation structure of the dataset (among different internal and external variables), to 
select those variables to be included in the model. The analysis, described in Liu et al. (2013), leads to the 
selection, as inputs to the model, of the 6 internal variables  and the 4 external ones 

.

3.2 Results 
The sparse GP regression framework has been applied considering  input variables, among which 6 
are internal parameters of the RCP and 4 are external variables, and by estimating 20 inducing points. The 
tolerance for the inducing point estimation procedure has been set to  The training set is 
composed by observations corresponding to the first 1,000 time instances, while the testing set includes 
the subsequent 500 observations. The resulting weighting functions, estimated on the training set, are 
shown in Figure 1 (solid line): they have been plotted one after the other according to the sequence of time 
windows they are referred to; dashed vertical lines correspond to the boundaries of the final estimated time 
windows. As expected, local minima in the weighting function can be observed at the boundary between 
time windows. When a minimum at the boundary is not observed, as it is the case of , this fact can 
be taken as an indication that the number of inducing points should be reduced. Note that the procedure 
automatically keeps the weighting functions nearly constant in time windows where the within-window 
similarity between the inputs and the target is uniform (as it is the case of the 5th, 8th, 12th and 13th time 
windows). 

Figure 1: weighting functions estimated by the inducing points selection procedure described in Section 
2.2. Dashed vertical lines indicate the estimated time windows 

Given the optimally selected set of inducing points, we applied the sparse approximate GP method to 
predict the target variable  given the internal and external variables selected as inputs. The predictive 
distribution in Equation (6b) has been computed for the testing set, and the predictive distribution mean 
together with the 95 % prediction intervals (PIs) for the target variables have been obtained. The predictive 
distribution mean and the corresponding PIs are shown in Figure 2 (solid and dashed lines, respectively), 
together with the target variable  (dotted lines). The testing set coverage is 86 %, which is satisfactory 
both from the methodological and engineering perspectives.  

4. Conclusions 
GP models are flexible and widely used nonlinear regression models, capable of efficiently estimating 
nonlinear input-output relationships. However, their computational efficiency can become dramatically low 
in the context of high dimensional datasets, thus requiring sparse approximations. To achieve a global 
approximation, the most suited in the case of time-dependent data, a crucial point is the estimation of the 
set of inducing points. In the current work, we propose a novel and efficient strategy to estimate the 
inducing points, a set of pseudo-inputs that represents the most influencing inputs for the prediction. The 
strategy has solid and coherent mathematical foundations, and proves to be effective to the prediction 
purposes of interest. 
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Further developments of research will take into account different failure scenarios, describing the 
behaviour of the drifting process parameter of a same type of component utilized in different plants with 
different operational conditions.  

Figure 2: mean of the predictive distribution (see Equation (6b)) of the target  on the testing set (solid 
line), estimated 95 % PIs for the target  on the testing set (dashed lines), and observed values of the 
target  in the testing set (dotted line)
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