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On-line monitoring of nuclear plant system degradation is quickly becoming a crucial consideration as the 
licenses of many nuclear power plants are being extended. Accurate measurement of the current 
degradation of system components and structures is important for correct estimates of their remaining 
useful life (RUL). The propagation of the uncertainty involved in both the measurements and model 
construction of these system components is vital for finding the uncertainty of the overall system RUL 
calculation. 
Prognostic methods should seamlessly operate from beginning of component life (BOL) to end of 
component life (EOL). We term this "Lifecycle Prognostics." When a component is put into use, the only 
information available may be past failure times, and the predicted failure distribution can be estimated with 
reliability methods such as Weibull Analysis (Type I). As the component operates, it begins to consume its 
available life.  This life consumption may be a function of system stresses, and the failure distribution 
should be updated (Type II). When degradation becomes apparent, this information can be used again to 
improve the failure distribution estimate (Type III). Current research typically focuses on developing 
methods for the three types of prognostics. This research focused on developing a framework using 
Bayesian methods to transition between prognostic model types and update failure distribution estimates 
as new information becomes available. 
This paper will present methods developed that integrate models from the three prognostics categories 
into a single prognostic system to estimate RUL over the life of the component: Lifecycle Prognostics. The 
methods will also be validated on a range of test beds. 

1. Introduction 
The ultimate goal of prognostics is to obtain an accurate assessment for RUL predictions, shown in Figure 
1, with as little uncertainty as possible. From a reliability and maintenance standpoint, there would be 
increased safety by avoiding all failures. Calculated risk would greatly decrease, saving money by avoiding 
unnecessary maintenance. However, many challenges must be overcome. One large bottleneck for data-
driven prognostics is the availability of data. Without enough degradation data leading to failure, prognostic 
models can yield RUL distributions with large uncertainty, or mathematically unsound predictions. To 
address these issues a "Lifecycle Prognostics" method was developed to create RUL distributions from 
Beginning of Life (BOL) to End of Life (EOL). This employs established Type I, II, and III prognostic 
methods, and Bayesian transitioning between each Type.  

1.1 Type I: Traditional Time-to-Failure 
Historical time-to-failure (TTF) data, X, are collected and fit to a distribution. Using conditional probability, 
an RUL estimate can be made, given the current time. Methods to accomplish this are widely based on 
statistical distribution analysis. Three of the more common distributions include the Gaussian, exponential, 
and Weibull (Ebeling, 2010). Gaussian distributions are commonly used due to the tendency of the 
combination of a set failure distributions of unknown failure modes to tend towards this distribution as 
described by the central limit theory (Rice, 1995). Also for this reason, in the absence of a large number of 
observations, and without better information, the Gaussian or Normal distribution can give highly accurate 
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results in many cases. Due to factors explained later on, the Gaussian distribution will be used in this 
paper, when applying Type I.  

 

Figure 1: Prognostics Health Monitoring System 

1.2 Type II: Condition-based 
Type II, or condition information based prognostic methods, take into account the current and past stressor 
information. A stressor can be the environment in which the component or process operates, the listed 
workload, or any indication of the stress at work upon the system. For most cases, it generally is assumed 
that an object under greater stress degrades more quickly.  
One method that can utilize stressor based information is the simulation of the most likely future stress 
levels, which can predict a failure time. Monte Carlo Markov Chain (MCMC) based techniques can be used 
in this fashion (Kharoufeh et al., 2005), using a Life Consumption Model (Ramakrishnan et al., 2003). Cox 
Proportional Hazards Model (Liao et al., 2006) is another model, which assumes proportionality between 
the distribution and some covariate information related to the stress indicator. 

1.3 Type III: Degradation-based 
In Type III methods, degradation is quantified, monitored, and trended, starting from when a fault occurs 
and ending in failure. If a model of the system under normal operation exists, then the residuals can be 
collected to form the degradation, or prognostic, parameter and can be considered a quantitative measure 
of how severe any detectable fault in the system has become. Zio et al. (2012) proposed a prediction 
model using infinite impulse response locally recurrent neural networks. Another widely used method to 
predict the future degradation of a system is through the General Path Model (GPM) approach. Lu et al. 
(1993) first developed the method. Upadhyaya et al. (1994) first applied it to prognostics. Garvey (2007) 
applied it resulting in a patent and commercial system. When using the GPM approach, a parametric 
trending function is fit to the degradation parameter, and extrapolated until it crosses some threshold, 
called the degradation failure threshold. Typically, the failure threshold is based on historical failures, but 
need not directly indicate a point of catastrophic failure.  The failure threshold can be set as any point 
where a system no longer meets its design specifications. 
One of the simplest implementations of the GPM is the linear regression model. Using ordinary least 
squares (OLS) regression, a linear model can be defined by the general form, equation 1 (Gelmin et al,. 
2004), where Y is the response, X is the input matrix,  is the vector of parameters, and 2I represents 
independent observation errors with equal variance.  The columns of X are the independent parameter 
measurements and X includes a column of ones to allow for a non-zero intercept.  

  (1) 

 (2) 

2. Bayesian Statistics 
Bayesian methods, as opposed to classical frequency statistics, show how an expected value, a priori, 
changes with new data to form a posterior distribution. They are best used when limited data is available. 
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The use of a prior also means that information is conserved when new data is available. The weightings of 
the a priori and sampling data are dependent on the variance of the prior, the variance (uncertainty) of the 
data, and the amount of the measured data (number of samples). If the variance of the prior is small 
compared to the uncertainty of the data, the prior b0 will be weighed more heavily. However, as more data 
is collected, the data will be weighted more heavily and will eventually swamp out the prior in calculating 
the posterior. 

2.1 Bayes' Formula 
Bayesian statistics is based primarily on Bayes' formula (Ghosh et al. 2006). In essence, the posterior 
distribution ( |x), of parameters , is updated from its prior distribution ( '), in light of observed data x. In 
most practical applications, conjugate families can easily be referenced which solve Bayes' formula. One 
example is the Gaussian conjugate family, for which the posterior Most Likely Estimate (MLE) and 
variance are: 

 

                      (3) 

 

                      (4) 

where n is the number of samples in x, 2 is the sampling variance,  is the prior mean, and 2 is the 
uncertainty associated with the prior distribution.  

2.2 Linear Regression with Bayesian Priors 
For the Bayesian OLS model, because the noise variance of Y, 2, is known, the conditional posterior 
distribution of  given 2 is Gaussian (Gelmin et al. 2004), for which the conjugate prior distribution also 
takes on a Gaussian form.  
Before the Bayes prior information is incorporated, a data covariance matrix  is introduced. Instead of 
assuming equally distributed errors, 2I, the covariance matrix is an n x n symmetric positive matrix, 
containing the variance at each point. The posterior MLE and variance are then  

 (5) 

 (6) 

To include Bayesian updating, the prior distribution ~N(b0, b) is treated as one additional data point to the 
OLS solution. To achieve this, each variable is appended with the prior distribution data, equation 7. The X 
is appended with an identity matrix, with ones representing the parameters for which prior distributions 
exist.  

 (7) 

3. Transitions Between Prognostic Types 
When using Bayesian transitioning methods, there are a couple things to be aware of. Fundamentally 
Bayesian analysis updates a prior belief with new data to get a posterior belief. The general approach to 
applying Bayesian method consists of identifying the prior, which comes from the previous prognostics 
type. Then observational data is sampled from the newer prognostics type. They are then combined using 
the posterior expectations estimates, Eq. 3 and 4, or linear regression that includes prior information, 
Equations 5 to 7. For most prognostics types involving distributions, the former is used; for anything 
involving GPM, the latter.  
 

3.1 Type I to Type II Transitions 
As an initial test application, tire data was analyzed using Type I Gaussian, and Type II MCMC. The data 
consisted of 100 individual tires for which the operating conditions were tracked until failure. For three 
unfailed cases, Type I and Type II RUL distributions were found at each time step, Figures 2 and 3.  
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At each time step, the mean and standard deviation for both RUL distributions are easily obtained and 
applied to Eq. 3 and 4, with n set as the number of data points equal to the current time. In doing so, a 
posterior MLE was found at each time, Table 1. In this case study it is shown, using MCMC, the RUL at 
BOL matches the Type I distribution. The Bayesian transitioning methodology is meant to impact the BOL 
estimates. Since the Type II already matches Type I, such a transition is made unnecessary. In real 
applications, the more specific Type II data would be used, and the Type I discarded. However this method 
has shown a proof of concept of a mathematically sound way to transition from Type I to Type II, if such a 
transition is needed in other applications.  

Table 1:  RUL Estimation Through Lifetime of Unfailed Case #3 

Time Type I MLE Type II MLE Bayes MLE 
1 364 365 364 
2 363 365 364 
3 362 362 362 
4 361 360 360 
...    
233 132 114 114 
234 131 112 112 
235 130 111 111 
236(end) 129 110 111 

 

 

Figure 2: RUL Distributions at time=1 for Type I  
Figure 3: Type II RUL distribution

3.2 Type I/II to Type III GPM Transitions 
To demonstrate the methodology for transitioning into a GPM approach, the 2008 Prognostics Health 
Management Challenge Data is presented as a case study. This data consisted of 260 training examples 
of 24 signals ending in failure, and 259 censored testing examples of the same 24 signals. The actual RUL 
of the testing examples were given for validation. Detailed information on applying the GPM to the PHM 
data can be found in Coble (2011). The data was specifically given with no underlying knowledge of the 
system.  
Three GPM applications will be compared. (1) GPM - benchmark, (2) GPM with parameter priors, as 
explained in section 2.2, and (3) GPM with a RUL distribution prior. The last is a novel approach that 
addresses combining a prior RUL distribution with the prognostic parameter signal data. The problem with 
the GPM (2), using parameter distributions, is that it requires extensive degradation data of a population of 
systems. The GPM (3), using a prior RUL distribution, can incorporate available Type I or II analysis. 
Analogous to the previous method, the prior RUL estimate is treated as an additional data point. The X 
should be appended with one row of the prior MLE; the Y, threshold; the covariance matrix, the prior RUL 
uncertainty.  
In many cases GPM by itself is a powerful tool for extrapolating degradation to the critical threshold, Figure 
3. For test case 5, all 148 data points were fit to a quadratic functional fit using OLS. The RUL is found 
algebraically when the functional fit crosses the dashed threshold.  
However, if the GPM is applied soon after the fault is detected, the noise of the data can throw off the OLS 
estimate, and a nonsense RUL estimate can result. Figure 4 shows the exact same algorithm applied to a 
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censored set of the first 39 points, yielding poor results. Such undesirable RUL estimates can be avoided 
using Bayesian methods. The priors act as a guiding mechanism that forces the function to behave in the 
expected way. The more limited the data, the stronger the posterior estimates are forced towards the prior.  

 

Figure 3: Applying GPM to Test Case #5  Figure 4: GPM on censored Test Case #5  

Figure 5 shows GPM (2) applied to the same censored dataset as in Figure 5. Similar results were found 
in Coble (2011). Figure 6 shows the results of GPM (3). Both models show a vast improvement over 
simply applying GPM by itself.  

 

Figure 5: GPM (2) on censored Test Case #5  Figure 6: GPM (3) on censored Test Case #5 

Additionally the RUL estimates for all 259 test cases, uncensored, were found using Type I, and GPM (1-
3). They were compared using Mean Absolute Percent Error (MAPE), Table 2. The GPM models that 
included Bayesian performed more accurately than either the Type I or GPM by itself. And though the 
GPM (2) approach uses a lot more data, the GPM (3) achieved the lowest MAPE.  

Table 2:  MAPE for all PHM Test Cases 

Type I  GPM (1) GPM (2) GPM(3) 
105.4 68.7 60.9 59.5 

4. Test Bed Validation 
Five different test beds were developed, and are currently collecting data, in order to validate Lifecycle 
Prognostics and Bayesian transitioning methods. the first three are on-site at the University of Tennessee. 
A heat exchanger test bed was created to track degradation due to fouling. The exchanger, API Basco HT, 
is a shell and tube style exchanger with a brass shell, internal brass tube sheets, and 24 x ¼"copper tubes. 
As contaminated water passes through the hot tube side, it is expected to accumulate some fouling. The 
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temperatures, flow rates, and pressure are monitored to accurately track the heat transfer as the 
exchanger degrades. For the motor test bed, U5P1G U.S. Electrical Motors/Emerson general-purpose, 3-
phase, 3600 RPM motors are subjected to a cyclic thermal aging process designed to induce accelerated 
insulation breakdown and corrosion within the motors. Another setup consists of a six bladed neoprene 
impeller, which has been subjected to high levels of heat stress. The aged impeller is then placed in the 
pump in order to determine the time to failure. During testing the vibration, differential pressure and current 
of the pump is monitored to track thermal degradation of the impellers.  
At Pacific Northwest National Laboratory (PNNL), a passive components test bed was constructed to 
monitor degradation. This data will be shared with the University of Tennessee. A fifth test bed for bearing 
failure by Analysis and Measurement Services (AMS) will provide additional information.  

5. Conclusions 
In this paper techniques for estimating RUL were presented as a holistic Lifecycle Prognostics method, in 
which Bayesian transitions were applied. These transitions were broken into two general cases based on 
whether the new information is a simple addition of failure distribution information or more case specific 
information. The first involved a simple Bayesian combination of different RUL distributions. This applies to 
very general cases in which RUL distributions can be combined to form estimates containing more data.  
For the second general method, GPM, three different RUL prediction methods were compared on 
prognostic parameter data. Two were conventional regression methods, OLS regression, with and without 
parameter priors. The remaining novel method involved Bayesian analysis under restrictions of data 
availability, and utilizing prior RUL distributions, whether Type I or II. These methods will be developed 
further and validated using various test beds.   
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