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In order to comply with safety requirements and due to the increasing demand on oil production, failure 
prediction of the related systems (e.g. oil wells) has become an important task. An analytical modelling of 
the reliability behaviour of these systems is often impractical and this justifies the use of data-driven 
learning methods like Support Vector Regression (SVR). The paper proposes a comprehensive failure 
prediction framework based on the combination of Particle Swarm Optimization (PSO) and bootstrap 
methods with SVR. The PSO portion of the methodology is responsible for the simultaneous selection of 
SVR hyperparameters’ values and the choice of the most relevant influencing variables. The adjusted SVR 
model feed bootstrap methods, which provide point and interval estimates of the response variable. The 
bootstrapped PSO + SVR is applied in the context of the Brazilian oil industry and the obtained results 
suggest that it is a valuable tool in the support of maintenance-related decisions.  

1. Introduction  
Given the increasing demand on oil exploration and production, the proper functioning and availability of oil 
wells becomes a must. In addition to unattended market share, the occurrence of failures on these 
systems can provoke loss of production, accidents, environmental damages as well as increase of costs 
due to corrective maintenance actions and replacement of damaged components. In this way, the failure 
prediction of oil wells becomes an important task as it enables the implementation of preventive actions in 
order to reduce or avoid the undesired failure effects.  
The reliability behaviour of these systems is often dependent on a number of factors related to operational 
and environmental conditions as well as to aging and previous maintenance effects. The relationship 
between these influencing factors and the response variable (e.g. Times Between Failures – TBFs) can 
present nonlinearities and interactions, which result in intricate models that are difficult to be analytically 
established. In these situations, the adoption of a model-free learning method such as Support Vector 
Regression (SVR) becomes attractive, given that it does not require previous knowledge about the 
function or process that maps the influencing variables into the response variable. SVR is a variant of 
Support Vector Machines (SVMs – Vapnik, 2000) that were primarily developed to tackle classification 
problems. The training phase of SVMs involves the resolution of a convex and quadratic optimization 
problem for which the Karush-Kuhn-Tucker (KKT) first order conditions are necessary and sufficient for 
global optimality (Boyd and Vandenberghe, 2004).  Also, the associated objective function to be minimized 
is two-fold as it entails empirical errors and the errors related to the model capacity in predicting unseen 
data. Indeed, these characteristics are advantages of SVM over other learning methods such as Artificial 
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Neural Networks (ANNs) that can be trapped into local optima and only consider the minimization of 
empirical errors (Schölkopf and Smola, 2002).  
The performance of SVM depends on a set of hyperparameters from the training optimization problem that 
have to be previously set. The adjustment of these parameters has been performed by a number of 
methods: grid and pattern search (Momma and Bennett, 2002), gradient-based (Chapelle et al., 2002; Ito 
and Nakano, 2003; Chang and Lin, 2005), Genetic Algorithms (GAs – Pai, 2006; Chen, 2007), Particle 
Swarm Optimization (PSO – Lin et al., 2008; Fei et al., 2009; Lins et al., 2012a). Also, in some practical 
cases, among the various factors that are supposed to influence the response variable, only a subset of 
them may be important to describe the response variable behaviour  (Baraldi et al., 2012). Thus, a variable 
selection procedure can be applied to identify such a subset of variables so as to improve the prediction 
performance of predictors (e.g. SVMs), to construct faster predictors and also to provide better 
understanding of the underlying process that might have generated the response variable (Guyon and 
Elisseeff, 2003). Rakotomamonjy (2003) performs variable selection for SVM classification by means of a 
backward elimination strategy based on relevance criteria originated from SVM theory (weight vector and 
upper bound of the generalization error), but hyperparameter tuning is not considered. The training set is 
modified whenever a variable is included or excluded from the model, thus the hyperparameters’ values 
may also change for each specific case. In order to tackle this issue, a PSO algorithm is used by Lins et al. 
(2011) to simultaneously adjust the SVR hyperparameters and select the most important input variables. 
Once the SVR model is adjusted, it is able to provide point estimates of the response variable but for the 
same set of regressors’ values, the estimated SVR model gives the same response value no matter how 
many times it is calculated. However, in practice, there is uncertainty about the response value due to non-
controllable effects. Given that SVR does not require any hypothesis about the distribution of the error 
term, the central limit theorem enables the approximation of confidence and prediction intervals when large 
data sets are available (Brabanter et al., 2011). On the other hand, for small numbers of data points, the 
intervals based on bootstrap (Efron, 1979; Efron and Tibshirani, 1993) tend to be more accurate, given 
that they do not rely on asymptotic results but on the construction of the limit distribution from the available 
data. The coupling of bootstrap methods (based on pairs and residuals samplings) with SVR is analyzed 
by Lins et al. (2012b). 
This paper proposes a comprehensive prediction framework based on the combination of PSO and 
bootstrap methods with SVR, which provides point and interval estimates of the response variable via SVR 
models accurately adjusted over the most relevant input factors and with the appropriate hyperparameters. 
In this way, this work is an extension of the works of Lins et al. (2011, 2012b). The proposed bootstrapped 
PSO + SVR is used for the prediction of TBFs of onshore oil wells located in the Northeast of Brazil. The 
onshore activities in this region date back to the beginning of oil exploration in Brazil (Zamith and Santos, 
2007). In spite of being related to mature wells of low productivity, these activities were responsible for 
about 83 % of the regional production in the period 2000-2012 (ANP, 2013). 
This paper unfolds as follows. In Section 2, an introduction to SVR, a description of the used PSO and the 
general ideas of bootstrap methods based on pairs and on residuals used in regression analysis are 
presented. In Section 3, the proposed combination of SVR with PSO and bootstrap is detailed. The 
application of the bootstrapped PSO + SVR framework in the prediction of TBFs of onshore oil wells from 
Northeast of Brazil is in Section 4. Finally, some concluding remarks are given in Section 5. 

2. Theoretical Background 

2.1 Support Vector Regression 
Non-parametric regression can be formalized considering the response variable Y as generated by the 
model Y = μY(x) + u(x), where μY(x) is the deterministic but unknown expected value of Y and u(x) is a 
random error term with zero mean and variance σu

2(x) > 0. SVR aims at estimating μY(x) using an 

observed data set D = {( 1 1,yx ), …, ( ,yx )}, called the training set. More specifically, the weight vector w 

and the linear coefficient b of a regression expression of the form f(x) = wTφ(x) + b are adjusted on the 
data of D. The operator φ maps x into a higher dimensional space F to account for possible nonlinearities 
between the input vector and the response variable. The values for w and b are obtained from the 
resolution of a convex and quadratic optimization problem, whose dual formulation is as follows (Schölkopf 
and Smola, 2002; Kecman, 2005): 
 

max α, α*                    – 1/2 Σl Σo (αl - αl*)(αo - αo*) φ(xl)
Tφ(xo) – Σl [ε(αl + αl*) + yl(αl – αl*)]           (1) 

s.t.                            Σl (αl - αl*) = 0,           (2) 
                                 0 ≤ αl, αl* ≤ C, ∀l,           (3) 
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where l, o = 1, ..., ; α and α* are -dimensional vectors of Lagrange multipliers. The resolution of the dual 
training problem provides the adjusted regression function: 
 
f0(x) = w0

Tφ(x) + b0 = Σl (αl0 – αl0*) φ(xl)
Tφ(x) + b0,           (4) 

 
in which the index 0 represents optimal values.  
In practice, an appropriate mapping φ is often difficult to be determined and the calculation of the dot 
products that appear in (1) and (4) may be computationally expensive. Fortunately, SVR allows the use of 
kernel functions K(xl, xo) = φ(xl)

Tφ(xo), which are defined in the original space and can be used to implicitly 
compute the dot products (Schölkopf and Smola, 2002). The Gaussian radial basis function (RBF), K(xl, 
xo) = exp(– γ ||xl – xo||

2) is the most widely used kernel function (Hsu et al., 2003; Lin and Lin, 2003). The 
substitution of the dot products in (1) by the RBF does not affect the way of solving the dual problem. 
Thus, the dot products in the estimated regression expression (4) may be replaced by the RBF kernel as 
well. Along with C and ε, the parameter γ in the RBF kernel has to be set a priori. 

2.2 Particle Swarm Optimization for Variable Selection and SVR Hyperparameter Tuning 
For PSO, the basic element is a particle i, i =1, . . . ,npart that is characterized by its current position in the 
search space (si), the best position it has visited (pi) and its velocity (vi). Also, a fitness function is used to 
evaluate the particle performance. The adopted fitness function is the mean validation Mean Squared 
Error (MSE) given by (MSE1 + ... + MSEk) / k, which is obtained via a k-fold cross-validation. The npart 
particles comprising the swarm fly throughout the search space towards an optimum until one of the stop 
criteria is met: maximum number of iterations (niter); 10 % of niter with the same best particle; the difference 
between two consecutive best fitness values is smaller than a tolerance Δ. This process is governed by the 
following update equations:  
 
vij(t + 1) = χ{vij(t) + c1 · u1 · [pij(t)  sij(t)] + c2 · u2 · [pgj(t)  sij(t)]},           (5) 
sij(t + 1) = sij(t) + vij(t + 1),           (6) 
 
in which j regards the jth dimension of the d-dimensional search space, t indicates the time step (i.e. PSO 
iteration), χ is the constriction factor used to avoid huge velocity values, c1 and c2 are constants, u1 and u2 
are uniform random numbers in [0, 1] generated whenever the update takes place and for each j, pg = (pg1, 
..., pgd) is the position associated with the best neighbour of particle i (Bratton and Kennedy, 2007). 
Basically, for the quest for SVR hyperparameters and variable selection, the PSO search space is formed 
by d = 3 + n dimensions, where the first three regard C, ε, γ, in this order, and the remaining n are the 
variables rh associated with regressors xh, h = 1, ..., n. The latter variables are defined in the range [0, 1] 
and if rh ≥ 0.5, the hth regressor is included in the model, otherwise it is not considered. PSO + SVR is 
summarized in steps 1-7 of Figure 1. For further details, the reader is referred to Lins et al. (2011). 

2.3 Bootstrap for the Construction of Confidence and Prediction Intervals 
Bootstrap is a computer intensive method, whose main idea is to resample from the original data, either 
directly or via a fitted model, in order to create replicate data sets. These replicates enable the variability 
assessment of the quantities of interest (Davison and Hinkley, 1997). In the case of regression models, the 
bootstrap samples can be obtained based on pairs or on residuals.  
In the first case, the original data pairs (x, y) are sampled with replacement and each of them have the 

same constant probability 1/  of being selected. A typical bootstrap sample based on pairs is of the form 

Db = {(
1 1
,b bi i
yx ), …, ( ,b bi i

yx )}, in which the indices 1 ,...,b bi i are uniformly generated from 1, …,  and b = 1, 

…, B. The residuals sampling, in turn, requires a fitted regression model over the original data set, 
henceforth called f00, and the computation of residuals. Thus, f00 and the residuals are used to construct 

the bootstrap samples Db = {(
1

0
1 1

ˆ, bi
y u+x ), …, ( 0ˆ, bi

y u+x )}. In order to account for the more general case 

of heteroskedastic errors, the various b
li

u are sampled from the set of modified residuals lu = (ûl - Σl ûl / ) . 

ηl, in which ûl = 0ˆ
l ly y− is the ordinary residual and ηl is the Rademacher variable defined as –1 with 

probability 0.5 and as 1 also with probability 0.5 (Liu, 1988; Davidson et al., 2007). 
For a given observation of the vector of input variables x+, both bootstrap schemes allow for the 
construction of percentile confidence intervals for μY(x+). However, only the residuals approach enables a 
straightforward manner to obtain prediction intervals concerning Y+ (Davison and Hinkley, 1997; Lins et al., 
2012b). In order to simulate the variation of Y+ about μY(x+), additional M samplings are required to 
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estimate the distribution of the prediction error δ+ = Y+ – f0(x+) via 0ˆ ˆ ˆ( )bm m by u yδ+ + + += + − , m = 1, ..., M. Then, 

specific percentiles of the estimated prediction errors are added to the considered point estimate so as to 
give the related prediction interval. The bootstrapped SVR presented in Lins et al. (2012b) is summarized 
in steps 7-9 of Figure 1. 

3. Bootstrapped PSO + SVR 
In this section, the combination of SVR with PSO and bootstrap is presented (Figure 1). The first step to 
construct an SVR model to predict Y based on a set of observed pairs (x, y) is to divide the available data 
set into training + validation and test sets (step 1). The observations of the test set are treated as unknown 
data, thus they are neither used in the PSO nor in the construction of the bootstrap samples. The training + 
validation set feeds the PSO portion (steps 2-6) of the proposed methodology and, as an intermediate 
outcome, the selected hyperparameter values and chosen influencing variables are used for retraining 
SVR over the entire training + validation set (step 7); the obtained model is f00. The construction of 
bootstrap samples Db (either by pairs or residuals) based on resamplings of the training + validation set 
and the SVR trainings performed over each of them enable the estimation of the SVR models f0b (steps 8.1 
and 8.2). For a new observation of the input variables x+ (e.g. from the test set), f00 and the various f0b are 
used to provide estimates of the response variable, which are used in the calculation of the bagging 

estimate ˆ bagy+  = ( 0ˆ ˆ b
b

y y+ ++ ) / (B + 1) (Breiman, 1996) that is assumed as point estimate (step 9.1). Also, 

the values 0 1ˆ ˆ ˆ,. ,..., By y y+ + +  are used in the construction of the percentile confidence interval with (1 – α) 100 

% confidence level for the mean response (step 9.2). By the residuals scheme, one may easily obtain 
prediction intervals for Y+ by the estimation of prediction errors (steps 9.3.1-9.3.2). 
 

1. Define training + validation and test sets. 
2. Randomly initialize particles’ positions and velocities; define particles neighbours. 
3. For each feasible particle i: 
    3.1. Perform k-fold cross-validation and obtain the mean validation MSE. 
    3.2. Update pi. 
4. Update overall best and each particle’s best neighbour. 
5. If a stop criterion is met, go to step 7; otherwise, go to step 6. 
6. Update v and s, go to step 2. 
7. Given the best particle, retrain SVR considering the entire training + validation set; obtain f0

0. 
8. For b = 1, ..., B: 
    8.1. Construct a bootstrap sample Db. 
    8.2. Train an SVR over Db; obtain f0b. 
9. For a given observation x+: 

    9.1. Obtain 0 1ˆ ˆ ˆ,. ,..., By y y+ + +  from f00, f01..., f0B and calculate ˆ bagy+ . 

    9.2. CI[μY(x+); α] = [ /2 1 /2ˆ ˆ,y yα α−
+ + ]. 

    9.3. If bootstrapping residuals: 
           9.3.1. For b = 1, ..., B and m = 1, ..., M: 

                     9.3.1.1. Randomly select a residual from the residuals sample, calculate mu+ .  

                     9.3.1.2. Estimate prediction error ˆbmδ+ . 

           9.3.2. PI(Y+; α) = [ /2 1 /2ˆ ˆˆ ˆ,bag bagy yα αδ δ −
+ + + ++ + ]. 

Figure 1: Bootstrapped PSO + SVR 

4. Application Example 
In this Section, the bootstrapped PSO + SVR is used in the prediction of TBFs of oil wells located in the 
Northeast of Brazil. The data considered in this example was analyzed by Barros Jr. (2006) and is similar 
to the one used in Lins et al. (2011). The database contains observations from 1983 to 2006 of TBFs (in 
days) and of various aspects of different onshore wells. In addition, wells’ failures are deemed to occur 
upon the failures of their installed rods. The regressors that are believed to influence the wells’ 
performance are related to operational and environmental characteristics (x1 - x11) and to previous failure 
and maintenance of the rods (x12-x18). They are: x1 – well depth (m); x2 – well production (m3); x3 – 
percentage of water and solids; x4-x7 – presence of rods of 1”, 7/8”, 3/4” and 5/8”, respectively; x8 – level of 
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H2S; x9 – level of paraffin; x10 – type of artificial lifting; x11 – filter type; x12 – location of previous failure; x13 
– mode of previous failure; x14 – substitution of rods in previous maintenance; x15-x18 – state of the 1”, 7/8”, 
3/4” and 5/8” rods in previous maintenance, respectively. The categorical variables x4-x18 were handled via 
0-1 dummies (Montgomery et al., 2006). 
The available data set comprised 242 observations related to 26 wells located in the same geographical 
area. From these, 192 were allocated to the training + validation phase and the remaining 50 formed the 
test data. For the PSO portion of the algorithm, a 5-fold cross validation technique was considered along 
with npart = 20, nneigh = 8, niter = 5000, Δ = 10-12, χ = 0.7298, c1 = c2 = 2.05.  
In order to avoid negative TBFs, the natural logarithm of the response variable was taken into account. 
Also, all variables were individually scaled in [0.1, 0.9] so as to minimize numerical problems during SVR 
trainings. In this way, the obtained values for the SVR hyperparameters are related to the transformed 
variables. The PSO provided C = 971.1587, ε = 0.0617, γ = 1.6886 and the selected input variables for the 
regression model were x8, x9, x11, x14, x15 and x18.  
The obtained results over the test set are shown in Figures 2 and 3. For this example, the point estimates 
provided by the residuals approach had overall better performance over the test set than the ones given by 
the pairs scheme (MSEp = 1.1586 . 105 vs. MSEr = 1.1557 . 105). As an illustration, for the first test point 

with input vector x+: ,p
ˆ bagy+ = 171.73 and ,r

ˆ bagy+ = 203.74; [135.19, 368.61] and [71.92, 519.70] are the 

confidence intervals for α = 0.10 given by the pairs and residuals sampling, respectively; the associated 
prediction interval for the same α is [25.83, 942.95], which was obtained by bootstrapping residuals. In this 
way, a conservative (resp., risky) attitude can be adopted if the maintenance action is performed near the 
lower (resp., upper) bounds of the given intervals. This would not be possible if only the estimated mean 
TBF had been provided. Surely, the definition of when maintenance should be carried out must consider 
the criticality of failure and the associated costs. 

  

Figure 2. Test results by bootstrapping pairs Figure 3. Test results by bootstrapping residuals 

5. Conclusion 
In order to construct accurate and informative failure prediction models, a combination of SVR with PSO 
and bootstrap methods was proposed. The selection of proper SVR hyperparameter values and the choice 
of the most relevant influencing variables were simultaneously performed by PSO. In this way, the problem 
of having inappropriate hyperparameters’ values for the group of chosen regressors is avoided. Also, the 
reduction in the set of influencing variables is an indication on how future efforts should be allocated in the 
observation of the input variables. The bootstrap methods coupled with the PSO + SVR provided not only 
point estimates but also associated intervals of probable values, which is valuable information in practical 
maintenance-related decision-making.  
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