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A fleet of vehicles with the same type and age needs to retire at different time points. The problem is to 
choose a subset of vehicles that will be first retired based on the overall performance of each vehicle. The 
paper presents an approach to establish an overall performance model based on operational and 
maintenance data of vehicles. The first step of the approach is to identify the key performance indicators 
based on the engineering knowledge; the second step is to carry out a principal component analysis so as 
to reduce the dimension of the problem; and the final step is to establish the overall performance model 
using the closeness measure of TOPSIS. The approach is illustrated by a real-world example, and the 
results are compared with the actual retirement decision. It is shown that the model-based decision is fairly 
consistent with the actual decision.  

1. Introduction  
The underlying decision variable in vehicle replacement or retirement problems is usually the age of a 
vehicle (Jorge and Rui, 1997), and the objective function is the total operating cost, which is often 
assumed to be non-decreasing with age. This assumption may not be true due to the “user preference 
utilization pattern” that the new vehicles become the most highly utilized so that their operational costs can 
be higher than those of the older vehicles (Parthana et al., 2012).  
There are situations where the age is not the underlying variable of vehicle retirement decision. For 
example, the vehicles with the same age may be retired at different times due to the acquisition budget 
constraint as mentioned by Rueda and Miller (1983) and Dietz and Katz (2001). In this case, the 
performances of individual vehicles have to be evaluated based on technical information and economical 
information. A large amount of field data in a vehicle fleet management system is available. This makes it 
possible to evaluate the performance of each vehicle for performance-based retirement decision. Jiang 
and Shi (2010) deal with this problem based on the correlation and regression analysis. Their approach 
requires the information of actual retirement decision and this limits its usefulness.  
This paper presents a novel approach to improve their approach. The proposed approach includes three 
steps. The first step is to collect field data and identify key performance indicators (KPIs) based on the 
engineering knowledge. The second step carries out a Principal Component Analysis (PCA) so as to 
reduce the dimension of the problem. The third step establishes the overall performance model using the 
closeness measure of TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution). The 
approach is illustrated by a real-world example, and the results are compared with the actual retirement 
decision.  
The paper is organized as follows. Section 2 gives the background and KPIs of the example. The 
proposed approach is presented and illustrated in Section 3. The paper is concluded in Section 4.  
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2. Background and KPIs 
Consider a sub-fleet of 15 vehicles from a mixed postal vehicle fleet. The vehicles under consideration are 
the same age, type and model. By the time that data were collected 13 vehicles had retired in three lots 
(see Table 1) and the other two vehicles were in service.  

Table 1: Numbers of vehicles retired in different lots 

Lot 1 Lot 2 Lot 3 In service 
3 1 5 10 
4 2 9 12 

6 7 15  

8 11   

14 13   

A vehicle management system records cumulative kilometer reading (denoted as k  in 103 km), cumulative 
oil-consumption (denoted as l  in L), and cumulative maintenance cost (denoted as mC  in 103 RMB Yuan) 

for each vehicle. The maintenance cost includes the costs of repairs, spare part, tyre, etc, but does not 
include the overhaul cost. The company implements a driver incentive policy to control the fuel 
consumption and repair costs. The data are updated per 6 months. Jiang and Shi (2010) examine the plot 
of the cumulative kilometers versus vehicle age, and find that the plot is somehow convex and the lately 
retired vehicles have relatively large cumulative kilometers. These phenomena are explained by two 
assumptions: (a) the user wants to sufficiently utilize the vehicles before they retire, and (b) a healthy 
vehicle is more utilized in the sense of average. The second assumption can be viewed as another kind of 
“user preference utilization pattern”. Based on these assumptions, three additional indicators are 
considered and they are /k tΔ Δ , /l kΔ Δ  and /mC kΔ Δ . As such, there are totally six KPIs, and their 

values at the moment of decision are shown in Table 2.  

Table 2: Data of KPIs 

Original variables Derived variables 
Vehicle 

k , 103 km l , L mC , 103 Yuan /k tΔ Δ  /l kΔ Δ  /mC kΔ Δ  

1 870.37 143.52 118.38 92.68 0.1134 0.2120 

2 863.05 144.83 110.32 99.30 0.1127 0.2195 

3 945.68 151.98 111.64 95.25 0.1134 0.3033 

4 647.18 96.64 80.97 76.57 0.1126 0.3602 

5 800.37 126.95 105.73 85.95 0.1128 0.2934 

6 899.41 151.17 119.02 109.15 0.1127 0.1975 

7 927.28 150.40 129.63 118.06 0.1133 0.1489 

8 794.93 128.75 113.71 113.81 0.1127 0.2618 

9 928.47 158.12 107.33 112.50 0.1122 0.2155 

10 917.49 155.97 99.27 108.10 0.1130 0.1733 

11 937.82 156.36 101.03 110.44 0.1132 0.1849 

12 840.37 123.51 70.12 99.01 0.1132 0.0435 

13 901.78 143.79 123.48 117.44 0.1133 0.1558 

14 936.73 163.89 104.03 119.57 0.1133 0.1549 

15 919.62 153.21 111.31 119.47 0.1132 0.1576 

jμ  875.37 143.27 107.06 105.15 0.1130 0.2055 

jσ  79.60 17.55 15.35 13.16 3.61�104 0.0770 

3. Overall performance model  
The problem involves multiple variables and they correlate to some extent. The PCA helps to obtain 
mutually independent linear combinations of the variables; and the TOPSIS can combine several variables 
into a distance-based measure. We use these two techniques to build the overall performance model.  

3.1 PCA 
PCA involves the following multi-step procedure (for more details, see Jolliffe, 2002).  
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Step 1: Calculate the sample mean and standard deviations for each variable, and standardize the original 
observations: 
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where n  is the total number of vehicles, jμ  is the sample mean of the j -th variable, jσ  is the sample 

standard deviation with 1 6j≤ ≤ , ijx  is the value of the j -th variable for the i -th vehicle, and ijy  is the 

standardized value of ijx .  

Step 2: Calculate the covariance matrix of the standardized observations.  
Step 3: Calculate the eigenvalues and unit eigenvectors of the covariance matrix. The eigenvalues are 
arranged in descending order.  
Step 4: Compute the contribution of each eigenvector and select a subset of the principal components.  
Step 5: Convert the observed data to component scores and interpret each selected principal component.  
PCA can be conveniently carried out using a spreadsheet program such as Excel. For the example in this 
paper, the sample mean and standard deviations are shown in the last two rows of Table 2; the correlation 
matrix is shown in Table 3; and the eigenvalues ( kλ , 1 6k≤ ≤ ) and unit eigenvectors ( kU ) are shown in 

Table 4.  

Table 3: Correlation matrix 

 1Y  2Y
 3Y

 4Y
 5Y

 6Y
 

1Y  1 0.9581 0.4819 0.7075 0.4151 -0.5344 

2Y  0.9581 1 0.5276 0.7205 0.274 -0.4192 

3Y  0.4819 0.5276 1 0.4795 0.1721 0.0551 

4Y  0.7075 0.7205 0.4795 1 0.1955 -0.6118 

5Y  0.4151 0.274 0.1721 0.1955 1 -0.4054 

6Y  -0.5344 -0.4192 0.0551 -0.6118 -0.4054 1 

Table 4: Eigenvalues and eigenvectors 

k  kλ  kc  kC  1U  2U  3U  

1 3.4378 0.5730 0.5730 0.5094 0.0374 -0.0020 

2 1.1465 0.1911 0.7640 0.4927 0.1831 -0.0953 

3 0.8067 0.1344 0.8985 0.3087 0.6359 0.3290 

4 0.4296 0.0716 0.9701 0.4624 0.0412 -0.3536 

5 0.1555 0.0259 0.9960 0.2591 -0.4343 0.8195 
6 0.0239 0.0040 1 -0.3485 0.6086 0.2935 

Let jku  denote the j -th element of the k -th principal component. The k -th principal component is 

defined as  

6
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The value of kP  for a particular data point is called the component score and given by 
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The contribution of kP  to the total variance is given by  
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The cumulative contribution of the first k  principal components is given by  

1

k

k l
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As such, the information represented by the KPIs can be approximated by the first k  principal 

components if 1 0.9kC − < kC≤ . For the example in this paper, we take 3k = . The component scores are 

calculated from (3) and shown in Table 5.  
We now look at the interpretation of the three principal components. As seen from Table 4, the first and 
fourth elements of 1U  (i.e., 11u  and 14u ) have relatively large values and correspond to mileage variables. 

Therefore, 1P  represents the usage. According to the user preference utilization mentioned earlier, it is 

larger-the-better. 
Similarly, the third and sixth elements of 2U  have relatively large values and correspond to maintenance 

cost variables and hence 2P  represents the maintenance cost with a smaller-the-better nature. The fifth 

element of 3U  has a very large value and corresponds to fuel consumption variable and hence 3P  

represents the fuel consumption. It is also smaller-the-better.  

Table 5: Component scores  

i  1is  2is  3is  i  1is  2is  3is  

1 0.0221 -0.0001 1.5105 9 0.4001 1.2566 -2.0537 
2 -0.4544 0.5992 -0.4094 10 0.7185 -0.4158 -0.4389 
3 0.2831 0.5739 1.5972 11 1.0684 -0.4711 0.0321 

4 -5.287 -0.0598 0.1485 12 -0.8613 -3.2937 -0.6814 
5 -2.1817 0.6149 0.4586 13 1.3859 -0.0175 0.5106 

6 0.5771 0.8999 -0.6069 14 1.8617 -0.5977 -0.0770 
7 1.9115 0.2657 0.563 15 1.5112 -0.2741 -0.0768 

8 -0.9551 0.9196 -0.4765     

3.2 TOPSIS 
The selected principal components can be fused by the TOPSIS. The start point is the decision matrix 

{ ,1 ,1 }ijD s i n j k= ≤ ≤ ≤ ≤ . The normalized performance measure or rating is given by 

2
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The matrix { }ijR r=  is called the normalized decision matrix. Let jw  denote the weight of the j -th criterion 

(i.e., principal component in this paper). The weighted normalized matrix is defined as { } { }ij j ijV v w r= = . 

For the j -th criterion, let  

min( ,1 )jL ijv v i n= ≤ ≤ , max( ,1 )jU ijv v i n= ≤ ≤  (7) 

Let ( ,1 )jA v j k+ += ≤ ≤  denoted the ideal solution and ( ,1 )jA v j k− −= ≤ ≤  denoted the negatively-ideal 

solution. For a larger-the-better [smaller-the-better] criterion, the j -th elements of A+  and A−  are jUv  and 

jLv  [ jLv  and jUv ], respectively.  

Let id +  and id −  denote the distances of the i -th alternative to the ideal and negatively-ideal solutions, 

respectively. They are calculated as  
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The relative closeness of the i -th alternative with respect to the ideal solution A+  is defined as below:  

1 / (1 / )i i ic d d+ −= +  (9) 
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The alternatives can be ranked based on the values of ( ,1ic i n≤ ≤ ). The best alternative should have the 

largest value of relative closeness.  
A difficult to implement TOPSIS is to specify the criterion weights. In the context of PCA, the criterion 
weights can be calculated as below:  

1
/

k

j j l
l

w λ λ
=

=  (10) 

For the example in this paper, we have ( jw ) = (0.6377, 0.2127, 0.1496).  

For more details about TOPSIS, see Hwang and Yoon (1981) and Hwang et al. (1993); and a specific 
application of TOPSIS can be found in Porhin ák and Eštoková (2012).  

3.3 Overall performance model 
The overall performance model can be defined by (9). A large value of ic  implies a good performance and 

hence is desired. For the example in this paper, the values of ic  are shown in the second column of Table 

6; and the rank numbers of alternatives are shown in the third column. When the number of vehicles to be 
retired is known, the model-based retirement lot number of a particular vehicle can be determined based 
on the rank number, and is shown in the fourth column. The last column of Table 6 shows the differences 
between the model-based and actual lot numbers.  

Table 6: Comparison between model-based and actual decisions 

i  ic  Rank 
Model-based 

lot no. 
Actual lot no. Lot difference 

1 0.6269 5 1 2 1 
2 0.5954 4 1 2 1 

3 0.6299 6 2 1 1 

4 0.1210 1 1 1 0 

5 0.3967 2 1 3 2 
6 0.6765 9 2 1 1 

7 0.7498 12 3 2 1 

8 0.5371 3 1 1 0 

9 0.6627 8 2 3 1 

10 0.7378 10 2 4 2 
11 0.7556 13 3 2 1 

12 0.6486 7 2 4 2 
13 0.7435 11 3 2 1 

14 0.7991 15 4 1 3 
15 0.7728 14 4 3 1 

It is noted that eleven of the fifteen vehicles have the lot differences of smaller than or equal to 1, implying 
that the model-based decision is roughly consistent with the actual decision. This confirms the 
appropriateness of the proposed approach.  
Four vehicles (i.e., Vehicles 5, 10, 12 and 14) have the lot differences of larger than 1. We examine these 
vehicles one by one as follows.  
Referring to Table 5, all the scores of three principal components of Vehicle 5 are poor and hence it should 
be retired in the first lot. In other words, the model-based decision may be more appropriate.  
Vehicle 10 has the 6th largest score in the first principal component and the 5th smallest score in the 
second and third principal components. As a result, its closeness is very close to the one of Vehicle 13, 
which was retired in the third lot. In other words, the model-based decision for Vehicle 10 is reasonable.  
Vehicle 12 has the 11th largest score in the first principal component, the 1st smallest score in the second 
principal component and the 2nd smallest score in the third principal component. In other words, it is very 
poor in the first principal component and very good in the other two principal components so that the 
model-based decision requires it being retired in the second lot. However, if the vehicle just experienced a 
high-level preventive maintenance action so that it has a low score in the first principal component, the 
overall performance model cannot reflect such information and the actual decision is right.  
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All the scores in the three principal components for Vehicle 14 are good and it should be retired in the last 
lot. A possible cause for it to be retired in the first lot may be the fact that the decision maker wants to 
avoid a big upcoming cost such as high-level preventive maintenance.  
The above analysis suggests that the vehicle retirement decision should take the maintenance action 
completed just and upcoming cost into account. Such information can be jointly used with the overall 
performance model.  

4. Conclusions  
In this paper we have considered the vehicle performance evaluation problem based on the records of 
operating and maintenance of vehicles. A hybrid approach that combines PCA and TOPSIS has been 
proposed to solve this problem. The criteria weights required by TOPSIS can be mathematically generated 
using the outcomes of PCA. The proposed approach offers a method to fuse KPIs into an overall 
performance model, and strengthens the capability of TOPSIS to solve multi-criteria decision problems. 
The approach has been illustrated by a real-world example.  
A main conclusion is that the overall performance model can offer fairly reasonable decision and the 
decision accuracy can be improved through taking the maintenance action completed just and upcoming 
cost into account. A main finding is that healthy vehicles can be more utilized so that their cumulative 
kilometers can be higher than those of the unhealthy vehicles.  
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