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Self-optimizing mechatronic systems offer possibilities well beyond those of traditional mechatronic 
systems. Among these is the adaptation of the system behavior to the current situation. To do so, they are 
able to choose from different working points, which are pre-calculated using multiobjective optimization 
and are thus Pareto-optimal with regard to the chosen objective functions. In this contribution, a method is 
presented that allows to continuously control the system degradation by adapting the behavior of a self-
optimizing system throughout its complete lifetime. The current remaining useful lifetime is estimated and 
then related to the spent lifetime and the desired useful lifetime. Using this information, a reliability-related 
objective is prioritized using a closed-loop control, which in turn is used to determine the working point of 
the self-optimizing system. This way, the desired useful lifetime can be achieved. 
To exemplify the setup of the controller structure and to demonstrate the adaptation of the system 
behavior, a dynamic model of a clutch system is used. It can be seen that the closed loop controller is able 
to correct for external perturbations, such as changed requirements, as well as changed system 
parameters. This way, the modeled system is able to achieve the desired lifetime reliably. 

1. Introduction 
Self-optimizing mechatronic systems are able to autonomously adapt their behavior if the user 
requirements or operating conditions change (Gausemeier et al., 2013). To this end, the current situation 
is monitored and the objectives of the system are determined. Using model based multiobjective 
optimization, for which a model of the dynamical behavior of the system is used, optimal system 
configurations are calculated before operation of the system. To adapt the system behavior during 
operation, the self-optimizing system selects among these optimal system configurations. 
In order to use self-optimization to ensure that the requirements regarding reliability of the system are met, 
a suitable selection process has to be implemented. To adapt the system behavior advantageously with 
regard to system reliability, it has to be possible to lower work load or wear on critical components by 
selecting appropriate optimal system configurations. Thus it is also necessary to include system 
degradation in the objective functions used for the multiobjective optimization. 
To control the remaining useful lifetime, the whole system history has to be taken into account as well. If it 
was to be included in the model used for the model based multiobjective optimization, the optimization 
process would take disproportionally long, effectively rendering this approach impossible. Thus a process 
to take the system history into account separately during operation is required. For this, our presented self-
optimization based remaining useful lifetime controller can be used. 

2. Controlling the Remaining Useful Lifetime 
One strategy to increase the productive lifetime of a system is a precise maintenance strategy. The aim is 
to increase uptime and reduce downtime to achieve higher availability. With the further development of 
sensor technologies and sensor fusion techniques, a lot of sensor data to determine the current health 
state of a component or subsystem is accessible. Based on the current data and the system history, the 
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remaining useful lifetime can be estimated. For the estimation of the remaining useful lifetime, many 
methods, subdivided into statistical approaches, model-based approaches and artificial intelligence 
approaches, are readily available (Jardine, 2006). Given this remaining useful lifetime estimation, 
maintenance can be conducted condition-based in order to use the respective component as long as 
feasible with regard to e.g. product quality, concerning machine tools, or system safety in general. 
Increasing the availability and reliability of a system is mainly done during the development phase of a 
system. A first approach to influence the maintenance of a system during runtime is presented by so called 
self-maintaining systems. These systems are equipped with functional redundancies and therefore are 
able to reconfigure in the case of a failure (Umeda, 1992). This reconfiguration prolongates the availability 
by recovering the original function, but is not able to adapt the system to unforeseen situations. 
Only few approaches focus on controlling the reliability of the system during the operating phase. An 
approach to control the safety and reliability of a system is suggested in (Wolters, 2005). This approach 
uses reliability characteristics like the probability of failure, failure rate, etc. to control the system’s failure 
behavior. In order to influence the system, operating parameters or strategies are changed.  
The concept of Reliability-Adaptive Systems is presented by (Rakowsky, 2005). These systems should 
fulfill two main requirements: Firstly, the capability of quantifying the current system reliability and 
secondly, the capability of influencing the system behavior. For the influence, different aspects are 
mentioned. One option is to control the reliability in the sense of a closed loop control; another option is to 
enhance the preventive maintenance by estimating the maintenance point in time more precisely. 
Both mentioned approaches are not trying to control the remaining useful lifetime directly. A multi-objective 
optimization approach concerning the reliability within an optimization objective is not considered. 
Controlling the reliability opens up the possibility to fulfill desired maintenance intervals while at the same 
time, in contrast to condition-based maintenance, utilizing the system up to its full potential. 

3. Example System 
The example system used within this paper is a single plate dry clutch. This type of clutch is commonly 
utilized in passenger vehicles to connect an internal combustion engine to the drivetrain. The basic outline 
of the clutch system is shown in Figure 1. It consists of two friction plates with coefficient of friction , of 
which the input plate is connected to the engine while the output plate is connected to the driven system, 
e.g. a gearbox. The input and the output plates are rotating at speeds  and  respectively. To engage 
the clutch, both plates are pressed against each other by the force , thus transmitting torque from the 
input plate to the output plate and in turn applying this torque to the driven system. 

Figure 1: Clutch system 

3.1 Modeling the System Dynamics 
The torque , that can be transmitted by a clutch with effective radius , is calculated as follows: 

(1)

The force  is the actuation force. The clutch is fully disengaged with  and is fully engaged 
with . The coefficient of friction  depends on the difference in revolutionary speed of the 
two clutch plates . The first plate is assumed to rotate at a constant speed, 

, whereas the second plate’s dynamics have to be taken into account. These are given by: 

(2)

All masses of the driven system are merged into the moment of inertia . The second plate and the 
driven system are damped with parameter .
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The coefficient of friction is given by (Popov, 2010): 

if
if
if

(3)

The parameters of the system are not based on a real clutch but chosen arbitrarily. They are as follows: 
, , , , , .

3.2 Estimating the Remaining Useful Lifetime 
The most vulnerable components of the clutch system are the friction plates, which transmit torque by 
means of dry friction, which in turn induces wear. A model-based approach has been selected to estimate 
the remaining useful lifetime which is based on the assumption that clutch plate wear is proportional to the 
energy dissipated through friction  (Fleischer, 1973). For each actuation cycle  with time span 

, where  is the duration of the actuation cycle, the wear  is: 

d d (4)

To estimate the remaining useful lifetime, all actuation cycles need to be taken into account. To do so, the 
sum of  from cycle  until the current cycle  is calculated. The remaining useful lifetime 
for the next cycle  can then be estimated by taking the maximum amount of wear  of the clutch 
into account. This results in the following relation: 

(5)

With this formula, several minor aspects of clutch wear are neglected in favor of short simulation times, 
e.g. the influence of temperature on the proportionality factor , which we assume to be .

3.3 Multiobjective Optimization 
A control trajectory for the actuation force  has to be computed to actuate the clutch system. For this, 
multiobjective optimization techniques are employed, which attempt to minimize user defined objective 
functions by adapting system parameters. Typically, it is not possible to minimize multiple objective 
functions at once, but instead as one function’s value is lowered, another function’s value rises. This leads 
to the so-called Pareto front, which consists of all optimal compromises between multiple objective 
functions. To each point on the Pareto front, system parameters are given in the Pareto set. To compute 
Pareto front and –set, a genetic algorithm which comes with the Matlab global optimization toolbox has 
been used. 
The required objective functions are included in the model of the system dynamics outlined in section 3.1. 
For our system, the objective functions are , which represents the power loss in the clutch  and in turn 
corresponds to the wear rate of the clutch plates, as has been described in section 3.2, and , which 
represents e.g. comfort of vehicle passengers: 

d d (6)

d (7)

To compute the values of these objective functions, the dynamical model of the system is simulated over 
the period  using trajectories for  as simulation input. 
The duration of the actuation cycle and the shape of the trajectory are the optimization parameters. To 
include these in the optimization procedure, we subdivided the trajectory into 16 sections with equal 
durations. For the trajectory to begin with a completely disengaged clutch and end with a completely 
engaged clutch, N and  are assumed. The optimization parameters are 
then the total duration of the actuation cycle  and the shape computed by using 15 intermediate values 

, . Linear interpolation is used between these values. This way, the Pareto front 
shown in Figure 2 is obtained. A short total duration of the actuation cycle yields low energy losses but 
high accelerations, as opposed to a long duration, which yields inverse results. Each trajectory is a trade-
off between these two objectives. 

627



Figure 2: Pareto front for the clutch system with several selected points  

4. Closed-loop controller for the Remaining Useful Lifetime 
The proposed controller structure is shown in Figure 3. The model of the clutch system, the RUL 
estimation and the optimization look up, which contains Pareto front and Pareto set as results from the 
multiobjective optimization, are known from section 3. What is required furthermore are the controller and 
the generation of the RUL trajectory. The controller is a discrete closed-loop controller, which calculates 
the system input parameters for the th cycle using data from cycles .
Based on the current system requirements, a trajectory for the remaining useful lifetime is calculated. It 
begins with  and ends with  and has to be strictly monotonically 
decreasing. It can be altered during operation in order to adapt the system behavior. 
The difference in desired remaining useful lifetime and achieved remaining useful lifetime is calculated 
from this trajectory and the estimated remaining useful lifetime known from Eq (5). The controller then 
determines the required values for the system objectives  and . Using the pre-calculated optimization 
results, the system parameters  (actuation cycle duration) and  (actuation trajectory) are known. 
These are used for the next actuation of the clutch system, which is modeled using Eqs  (1), (2) and (3). 

Figure 3: Structure of the system with self-optimization based controller for the remaining useful lifetime. 

4.1 Implementation of the controller 
The control error  is used as controller input. To compute the controller signal, 
which is the value of one objective, a discrete PID controller is used: 

(8)
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This way, for the next actuation cycle, the desired value of the objective  is known. The closest known 
point is selected from the pre-calculated Pareto front, which also sets . With the corresponding data 
from the Pareto set, the system parameters actuation duration and the actuation trajectory are known. 
The parameters ,  and  have to be adapted to the system. For our clutch system, they were 
determined empirically ( , , ).

5. Results 
Figure 4 shows simulation results of a system model as outlined in section 3.1. To adapt the working point, 
the controller described in section 4 is used. In order to achieve good controller performance, the actual 
value, which in this case is the RUL, needs to be known as precisely as possible. For a real clutch system 
e.g. the thickness of the friction pad could be measured; however in the model, the estimation of the 
obtained RUL is conducted according to section 3.2. .The desired RUL, which serves as input for the 
closed loop controller, linearly decreases over the span of 500 actuation cycles. As can be seen, the 
adaptive system starts out with the working point ,  but adapts its behavior 
within approximately ten cycles to , , both of which are also highlighted in 
Figure 2. After this, the working point is not changed much. Note that the controller values are continuous, 
whereas the working points available in Pareto front and Pareto set are discrete. Due to this, the system 
might continuously switch between two working points that are close to the one desired working point 
which is not available. As can be seen, deviations between desired and obtained RUL are very low. 

Figure 4: System behavior adaptation from an arbitrary starting point  

Such behavior could also be obtained by selecting an appropriate working point in the first place. However, 
this is limited to the goals known during development, an adaptation during runtime is not possible. 
If the desired remaining useful lifetime changes, e.g. because of extended maintenance intervals, the 
system behavior has to be adapted, as is shown in Figure 5. At cycle 200, due to an external event, the 
desired remaining useful lifetime  is increased from 500 cycles to 600 cycles. The static system is 
not able to fulfill these changed requirements, whereas the adaptive system can do so easily by adapting 
the working point to , .
In another scenario, the system deteriorates more quickly than was anticipated, e.g. due to manufacturing 
tolerances or due to changed working conditions. In Figure 6, the system deterioration per cycle has been 
increased from cycle 200 onwards by altering  in Eq (3). The adaptive system is able to adapt its 
behavior to these changed operating conditions by selecting ,  and to meet 
the required number of cycles. The static system fails early and does not fulfill the reliability requirements. 

6. Conclusion and Outlook 
A novel strategy to actively control the remaining useful lifetime of mechatronic systems by using self-
optimization has been introduced. To this end, Pareto optimal working points, which are computed by 

R
U

L 

desired RUL
obtained RUL
difference

f 1

initial choice
adapted

f 2

cycles

initial choice
adapted

629



using a multiobjective optimization algorithm and a model of the dynamic behavior of the system, are used. 
The proposed controller selects the current working point based on the estimated remaining useful lifetime 
of the system and the desired remaining useful lifetime. By using this controller, either a pre-determined 
desired remaining useful lifetime can be ensured even though the system deteriorates differently than was 
anticipated during development or the desired remaining useful lifetime can be changed during runtime, 
e.g. to better comply with maintenance intervals.  
A model of a clutch system is used to exemplify the setup of this controller. The results of simulations of 
the clutch system show that the desired remaining useful lifetime can be achieved reliably. In this work, a 
basic controller that was parameterized empirically was used. We assume that it is possible to apply more 
advanced controller design techniques, however this was beyond the scope of this paper. Also systems 
with more than two optimization objectives, which are able to not only adapt their behavior based on the 
system reliability but also, at the same time, on other requirements, demand further investigation. 
The controller performance depends heavily on the precision of the estimation of the obtained RUL. It 
might prove necessary to include stochastic information about this in a future revision of the controller. 

Figure 5: At 200 cycles, the requirements are 
changed to a desired RUL of 600 cycles 

Figure 6: At 200 cycles, the wear of the clutch 
plates is increased by factor 2, prompting the static 
system to fail early 
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