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Recently, focus on maintenance strategies has been shifted towards prognostic health management 
(PHM) and a number of state of the art algorithms based on data-driven prognostics have been developed 
to predict the health states of degrading components based on sensory data. Amongst these algorithms, 
Multiclass Support Vector Machines (MC-SVM) has gained popularity due to its relatively high 
classification accuracy, ability to classify multiple patterns and capability to handle noisy /incomplete data.  
However, its application is limited by the difficulty in determining the required kernel function and penalty 
parameters. To address this problem, this paper proposes a hybrid differential evolution – particle swarm 
optimization (DE-PSO) algorithm to optimize the MC-SVM kernel function and penalty parameters. The 
differential algorithm (DE) obtains the search limit for the SVM parameters, while the particle swarm 
optimization algorithm (PSO) determines the global optimum parameters for a given training data set. 
Since degrading machinery components display several degradation stages in their lifetime, the MC-SVM 
trained with optimum parameters are used to estimate the health states of a degrading machinery 
component, from which the remaining useful life (RUL) is predicted. This method improves the 
classification accuracy of MC-SVM in predicting the health states of a machinery component and 
consequently increases the accuracy of RUL predictions. The feasibility of the method is validated using 
bearing prognostic run-to-failure data obtained from NASA public data repository.  A comparative study 
between MC-SVM with parameters obtained using simple grid search with n-fold cross validation and MC-
SVM with DE-PSO based on prognostic performance metrics reveals that the proposed method has better 
performance, with all the cases considered falling within a 10 % error margin. The method also 
outperforms other soft computing methods proposed in literature. 

1. Introduction 
In order to increase machinery availability and safety, focus has been shifted towards prognostic health 
management (PHM) maintenance strategy. PHM aims at monitoring the current health of a system or 
component and predicting the condition of the component or system at a future time (ISO 13381, 2004). 
The predictions can then be used to schedule appropriate maintenance or to adaptively control a system 
to ensure that its mission is accomplished, for instance in critical mission systems in aircrafts, autonomous 
vehicles and automatic manufacturing machinery. Several algorithms for PHM have been developed and 
can be broadly categorized into three groups: reliability based (Zio et al., 2012), model based and data 
driven based (Tobon-Mejia et al., 2011). In recent years, focus is increasingly being directed towards data 
driven methods since they do not require expert knowledge of the system being monitored and can be 
adapted to different kinds of systems, as long as there is some historical condition monitoring data for 
training the prognostic models. Health indicatory features are extracted from sensory data to define 
various stages in the lifetime of a component. The trained models are used in on-line monitoring of the 
health of a component. Commonly used algorithms include: support vector machines (SVM), artificial 
neural networks (ANN), Neural Fuzzy Networks, Hidden Markov Models, Bayesian Networks.  
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One of the methods used in diagnosis and prognosis of machinery is to estimate the health states of a 
degrading component. This approach is motivated by the fact that a system or machinery component 
displays several degradation stages in its lifetime. Tobon-Mejia et al. (2011) employed Hidden Markov 
Models (HMM) to classify the health of rolling element bearings into three conditions: healthy, faulty and 
failed. Camci and Chinnam (2010) employed hierarchical HMM for online estimation of health states of drill 
bits in a milling machine as they deteriorate. Lee et al. (2006) proposed a model that employs quantitative 
health assessment to evaluate the overlap between normal behaviour, most recent behaviour and faulty 
behaviour in machinery. However, our preliminary investigation showed that a component may display 
more than one faulty condition, thereby giving rise to more than three health states. Kim et al. (2012) 
proposed the use of health state probability estimates using SVM to conduct diagnosis and prognosis of 
machinery. The approach uses the historical RUL of similar components at each trained health state, an 
approach which would not be suitable for components that display varying lifetimes under similar operating 
conditions. 
This work aims at developing a prognostic model based on the health states of a component using MC-
SVM. The optimum penalty and kernel parameters are obtained through hybrid differential evolution and 
particle swarm optimization. The proposed approach consists of two parts. The first part involves training 
the SVM with the optimum parameters from the hybrid DE-PSO algorithm to classify the health states of a 
degrading component. The second part involves estimating the RUL from the health state probabilities, the 
percentage RUL at each trained health state, the spent lifetime of the components and the duration of stay 
at each health state. The feasibility of the proposed approach is validated using run to failure rolling 
element bearing data obtained from the NASA Data Repository (Nectoux et al., 2012). 

2. Multi-Class Support Vector Machines 
Support Vector Machines (SVM) is a machine learning technique for binary data classification, which uses 
a kernel function to transform the input data into a higher dimensional feature space. The binary 
classification problem is then solved by separating the data using a hyperplane (Chang and Lin, 2011). 
The hyperplane is defined by support vectors, a subset of data that defines the boundary between the two 
classes.
Multi-class classification is achieved by constructing and combining several binary classifiers. Several 
methods of constructing multi-classification SVM have been proposed. These include: pairwise (one 
versus one), one versus all and directed acrylic graph SVM (DAGSVM) (Hsu and Lin, 2002).  Pairwise 
method was employed in our work as it has been shown to be more suitable for practical applications (Hsu 
and Lin, 2002). In this method, SVM classifiers where each one is trained on data from two 
classes are constructed. Based on the training data, SVM produces a model which predicts the target 
values of the test data given only the attributes of the test data (Hsu et al., 2010). Given  training data 

, where  is the health indicator (extracted feature) at time  and 
 is the health state of , the  SVM solves the following classification problem for training 

data from  and  health states as shown below (Chang and Lin, 2011): 

Minimize:      (1) 

Subject to: 

                 

where the training data are mapped to a higher dimensional space by the kernel function .
Also is the support vector, is the hyperplane bias,  is the penalty parameter and  is the 
slack variable which defines the margin of the support vectors from the hyperplane. The error term 

reduces the number of training errors when data are not linearly separable (Hsu and Lin, 
2002). The radial basis function (RBF) shown in Eq. (2) was employed as the kernel function due to its 
high accuracy in classifying non-linear data (Chang and Lin, 2011):  

, (2) 
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where  is the kernel parameter. In the SVM parameter optimization problem, a combination of  and
that minimizes the cross validation error during training is obtained. To determine health state probabilities, 
the voting method proposed by Wu and Lin (2004) was employed.  

2.1 Hybrid Particle Swarm Optimization and Differential Evolution 
Differential evolution was employed to determine the search limit of the optimum parameters for each 
training data set, while PSO was employed to determine the global optimum parameters for each training 
data set. DE was selected because it is simple and straight forward to implement and converges fast 
compared to other optimization algorithms (Elsayed et al., 2012). On the other hand, PSO has the ability to 
accelerate towards the global best solution thereby avoiding convergence at the local optimum solution 
(Mirjalili et al., 2012). 

2.2 Differential Evolution 
Differential Evolution is a population based stochastic real parameter optimization algorithm that operates 
through similar computational steps as other evolutionary algorithms, that is, mutation, cross over and 
selection (Elsayed et al., 2012). In the mutation process, the parameters to be optimized (population) in a 
given problem are first initialized in vector form. DE then mutates randomly chosen vectors to produce an 
intermediary population of mutants. Each vector in the current population is combined with a mutant to 
produce a trial population in the crossover. Selection is then done to determine whether the target or trial 
vector survives to the next generation (Elsayed et al., 2012).  

2.3 Particle Swarm Optimization (PSO) 
PSO is inspired by the behaviour of social groups such as bird flocks and fish swarms. Each member of 
the swarm, called particle flies around the search space by following simple position and velocity update 
equations while evaluating the objective function at each new position (Mirjalili et al., 2012). The best 
position found by any particle within the search space is its own personal best towards which it accelerates 
in the next iteration. The best combination of parameters obtained from PSO is used to train the MC-SVM 
for health state classification. 

3. Proposed PHM Method 
The proposed method involves training MC-SVM to estimate the health states of a degrading component. 
Figure 1 shows the workflow of the proposed machinery prognostic method. 
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Figure 1: Workflow of the proposed machinery prognostics method 

4. Data Analysis 
Prognostic run to failure data of ball bearings obtained from NASA data repository (Nectoux et al., 2012) 
were used in the training and testing of the proposed model. The testing data sets are truncated run to 
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failure data sets, and the prognostic algorithm is required to estimate the operation time from the 
truncation point to failure. Each training/ testing data set consists of vibration signals sampled at a 
frequency of 25.6 kHz with 2560 samples recorded at intervals of 10 seconds.  

4.1 Feature Extraction and Selection 
Signals from faulty bearings are considered non-stationary and therefore time-frequency feature extraction 
methods are recommended. In this study, wavelet packet decomposition (WPD) with 3 decomposition 
levels was considered. The raw time domain signals were decomposed into the detail and approximate 
signals, with the approximate signal being further decomposed to its detail and approximate signals at 
each level, yielding a total of six signals for each accelerometer reading. The wavelet energy of each 
sampled signal was computed and a correlation analysis performed. Features with a correlation coefficient 
greater than 0.9 and less than 0.5 were selected as SVM inputs. WPD was selected because it is capable 
of handling non-stationary signals. 

4.2 Health States Selection 
The training data was analysed to determine the number of possible health states in the lifetime of a given 
set of components, in this case ball bearings. Power spectral density (PSD) was performed to convert time 
domain data into frequency domain data. A plot of the frequencies at the peak amplitude of the PSD 
spectrum against time revealed  existence of different health states, where a new set of frequencies 
appeared or disappeared in the lifetime of the bearing (Sutrisno et al., 2012), as shown in Figure 2 (a). The 
health states were confirmed using statistical features such as root mean square (rms) of the vibration 
signals as shown in Figure 2 (b). 

Figure 2: Observed health states in the lifetime of training bearing 1 from the first operation condition, (a) 
Frequency at peak amplitude, (b) Root mean square of the vibration signal, where NS is Normal state, FS1 
is faulty state 1, FS2 is faulty state 2, FS3 is faulty state 3 and F is failed. 

Five health states (ranging from normal condition to failure) were observed as shown in Figure 2. The 
bearings were assumed to have failed when the accelerometers recorded a value of 20 g, to avoid 
propagation of damage to other test rig components (Nectoux et al., 2012). The percentage remaining 
useful life at each health state was computed and a weighted average was obtained from the two training 
data sets provided. Table 1 shows the computed percentage remaining useful life at each health state. 
The target vector for SVM training consisted of the health state class for each training feature data point. 

Table 1: Observed health states and their percentage remaining useful life 

Health state class Health state Percentage RUL
1 Normal state 89 – 100 % 
2 Faulty state 1 55 – 89 % 
3 Faulty state 2 25 – 55 % 
4 Faulty state 3 2 – 25 % 
5 Failure 0 – 2 % 

4.3 RUL Estimation 
The remaining useful life was estimated from the health state probability and the percentages of the 
historical RUL as shown in the following equation (Kim et al., 2012):  
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, (3)

where  is the probability that a given data point belongs to class which is an output of the SVM 
algorithm;  is the percentage remaining useful life of health state , obtained from Table 1;  is the 
number of health states or classes;   is a function of the spent lifetime and  is the time spent at health 
state  a novel factor that has significant influence on the accuracy of the method. 

5. Results and Discussions 
The above procedures were implemented in MATLAB and the LIBSVM toolbox for SVM was employed 
(Chang and Lin, 2011). Test data provided for validating the PHM model was analysed and 12 features 
were extracted using wavelet packet decomposition (WPD) technique. The resulting vectors were fed into 
the SVM predict model as the input. Figure 3 shows the predicted health state probability at each given 
data point for the first test bearing.  

Figure 3: Predicted health states in the lifetime of test bearing 3 from the first operating condition 

The test data provided were truncated run-to-failure data of the bearings and from Figure 3 it can be 
observed that the bearing had degraded up to faulty state 3. The remaining useful life was then calculated 
using Eq. (3). The performance of the algorithm was evaluated based on percentage error and percentage 
accuracy by:  

, (4)

, (5)

where  is the actual remaining useful life of the test data provided for validation of the prognostic 
methods and  is the predicted remaining useful life. The test data consists of truncated run-to-failure 
accelerometer readings of five bearings and similar analyses were conducted on all the other test 
bearings. The prognostic performance metrics are shown in Table 2. A comparison between the 
performances of the proposed DE-PSO MC-SVM algorithm, with MC-SVM trained with kernel parameters 
obtained from a simple grid search was conducted as shown in Table 2.  

Table 2:  Performance evaluation of the proposed PHM model (Operating condition 1 (Nectoux et al., 
2012)) 

Test 
% Error % Accuracy 

DE-PSO
SVM

Simple grid 
search SVM 

DE-PSO
SVM

Simple grid 
search SVM 

Bearing 1_3 3.19 7.26 96.81 92.74 
Bearing 1_4 9.03 -23.50 90.97 76.50 
Bearing 1_5 1.87 -5.81 98.12 94.19 
Bearing 1_6 -4.81 -12.18 95.19 87.82 
Bearing 1_7 -0.97 29.58 99.03 70.42 
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The negative error in Table 2 indicates a late prediction or overestimation. In machinery maintenance good 
prognostic performance relates to early RUL predictions (Nectoux et al., 2012). It can be observed that the 
proposed PHM model is fairly accurate and outperforms the SVM method with a simple grid search of the 
SVM parameters, with the majority of the predictions being early predictions. The method also performs 
better than other soft computing methods proposed in literature (Sutrisno et al., 2012).  

6. Conclusion 
This study presents a prognostic approach based on MC-SVM with kernel parameters optimized using 
hybrid DE-PSO. The method employs DE-PSO MC-SVM to estimate the health states of a degrading 
component, from which the remaining useful life is predicted. Results show that the proposed method can 
be used to accurately predict the health states of a degrading component and estimate the remaining 
useful life. The method outperforms MC-SVM with kernel parameters obtained from a simple grid search 
and also other data driven methods proposed in literature. 
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