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Preventive maintenance is required to keep critical systems available at reasonable costs. Instead of 
applying the traditional experience-based approach of statistical analysis of failure data, the present paper 
proposes to adopt a predictive maintenance policy that relies on detailed knowledge of the physical failure 
mechanisms. A structured scheme for this approach is presented. Then three case studies from the 
military, a helicopter, a naval gas turbine and a military vehicle, are used to demonstrate the benefits of 
this approach.  

1. Introduction  
Military systems are often operated in extreme and highly variable conditions. The resulting large 
variations in required maintenance are however hardly recognized, since traditionally these systems are 
subject to a static maintenance concept with fixed intervals. Moreover, these intervals are often very 
conservative due to the critical nature of the systems, which yields a quite inefficient maintenance process 
(Tinga, 2010). Also, the traditional approach in determining maintenance intervals is experience based and 
relies on statistical or stochastic analysis of failures (Singpurwalla, 1995; van Noortwijk, 2009; Zio, 2012). 
The operational efficiency of the assets can be improved significantly when the maintenance is performed 
in a more dynamic manner, i.e. by taking the variations in usage and operating environment into account.  
This predictive maintenance approach is only possible when firstly the relation between the degradation 
rate and the operational conditions can be quantified, and secondly the variations in these conditions are 
monitored. The first requirement can be met by adopting physical failure models that quantitatively 
describe the damage rates as a function of the system usage. For most common failure mechanisms, like 
e.g. fatigue, wear and corrosion, failure models are available now (Tinga, 2013b). The key to applying 
these models in a predictive maintenance concept is the monitoring of the suitable usage parameter and 
its translation into the appropriate internal load. 
In the present paper, this concept will be described in general terms and will then be demonstrated on 
three different case studies: a helicopter, a navy frigate and a military vehicle. For all three cases the 
critical failure mechanisms will be identified and the associated failure models will be defined. Moreover, 
for the helicopter and frigate the specific usage parameters for the critical subsystems will be selected and 
the prognostic capability of the method will be demonstrated. For the military vehicle, the usage of the 
system will be defined in more general usage profiles. Also for this less detailed approach, it will be 
demonstrated that predictive maintenance provides clear benefits as compared to the traditional static 
approach. 

2. Methodology 
As was mentioned in the introduction, a predictive maintenance strategy, that takes into account variations 
in usage, requires (i) a quantitative relation between the degradation rate and the operational conditions, 
and (ii) monitoring of the variations in these conditions. Although an estimate of the average degradation 
rate can be obtained from a (large) collection of failure data, the precise relation with operational 
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conditions is hard to obtain. Therefore, understanding the physical failure mechanisms is essential, as is 
illustrated in Figure 1. This figure shows that the quantitative relation between usage of a system and its 
remaining life can only be assessed when the underlying physical failure mechanisms and associated 
loads are considered. 

 Figure 1: Relation between usage, loads and service life consumption of a system or component. 

The second requirement for a predictive maintenance approach is the monitoring of usage or loads. The 
challenge in that case is to find the parameter that is most relevant for the failure mechanism considered. 
For example, if a fatigue failure is considered, not the number of operating hours, but the number of start-
stops of a (rotating) system (which determines the number of load cycles) governs the service life 
consumption. Again, only knowledge on the physical mechanisms enables to select the appropriate 
parameter to monitor.  
However, application of the presented approach to all components and failure mechanisms is not feasible. 
Therefore, a suitable method to select the critical components is required. A structured approach for this 
selection process was recently developed (Tinga, 2013a), as is shown in Figure 2.  

               

Figure 2: Mechanism based Failure Analysis: selection of the most critical    Figure 3: Helicopter landing 
components and the associated failure mechanism and loads.                         gear shock absorber.  

In this approach, an overview of all possible failure modes of a (sub)system is created using a fault tree 
analysis (FTA). Then a selection procedure is applied to obtain the 5 most critical failure modes. Note that 
the criticality can be due to either cost issues or performance issues. If failure data is available in a 
maintenance management system (CMMS), then analysing this data provides the top 5 failure modes. If 
this data is not available, a failure mode, effects and criticality analysis (FMECA) can be executed. The risk 
priority numbers (RPN) obtained from such an analysis then enable to define the top 5 failure modes.  
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The final step in the procedure is to asses for each (critical) failure mode the failure mechanism and the 
governing load, which together constitute the root cause of the failure. If the load-carrying capacity (Tinga, 
2013b) of the system appears to be insufficient, a redesign or modification of the system should be 
considered. If the failure appears to be caused by a load that has been too large, the usage of the system 
must be changed to reduce the loads. However, in many cases this is not feasible due to operational 
constraints. Then predicting the moment of failure using physical models and adopting a preventive 
maintenance policy is the only way to prevent failures from occurring. In the next section, three examples 
will demonstrate how this predictive maintenance policy can be developed and applied. 

3. Applications 

3.1 NH-90 helicopter  
Analysing the list of failure modes of the NH-90 helicopter, as obtained from the CMMS, revealed that one 
of the persistent failure modes is oil leakage in the landing gear shock absorbers, see Figure 3. In a certain 
period, 11 oil leakage failures occurred within the fleet. The number of accumulated flight hours of the 
helicopters at the moment of these failures could be obtained (Heerink et al., 2012). This is plotted in 
Figure 4a, showing that there is a large variation in time to failure: the numbers of flight hours at failure 
range from 33 to 220 hours. The lack of correlation shows that the number of flight hours is not a relevant 
failure parameter. 
A root cause analysis was then performed and wearing of the rubber seal was identified to cause the 
leakage of oil from the internal oil chamber to the environment. A detailed analysis of this wear process 
reveals that the governing loads in this case are the normal load (Fn) applied to the seal and the distance 
(s) travelled by the seal relative to the counter surface. The resulting wear volume (V) is expressed by the 
Archard law for wear processes 

nV kF s=    (1)

where k is the specific wear rate. Finally, these loads must be associated to the usage of the system. The 
normal load on the seal is related to the amount of compression. This is a constant value, which can be 
estimated from the relative contraction of the seal and it’s elastic properties. The travelled distance is 
directly related to the movement of the cylinder. At each landing, the cylinder will be compressed to absorb 
the shock. The total weight of the helicopter determines the stroke of the cylinder. Since both the number 
of landings in each period and the helicopter weight during each landing can be obtained from the on-
board health and usage monitoring system (HUMS), the amount of wear of the seal for each specific 
helicopter can be approximated. This is done for each helicopter where a failure was detected, as is shown 
in Figure 4b.  

Figure 4a: Number of flight hours for 11 failure events.      Figure 4b: Predicted amount of  wear. 

These results clearly show that the calculated amount of wear, based on the number of landings and 
landing weight, has much more predictive power than the number of flight hours, since the variation in 
these values is much lower. Except for the first two cases, the points are roughly divided into a group 
around 30 mm3 and another group (of three points) around 50 mm3. The observed difference between the 
two groups can be explained by the fact that another type of seal was introduced in the absorbers that 
failed at 50 mm3 of wear. This new seal clearly has a better wear resistance than the original seal, since 
the oil leakage occurs at a later stage. It can thus be concluded that the number of landings, in 
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combination with the landing weight, is a relevant failure parameter that can be applied in a predictive 
maintenance policy. 

3.2 Naval gas turbine 
Gas turbines in navy frigates are used as booster engines, which means that they are only used when high 
speed sailing is necessary. This means that the gas turbines are used for only relatively short periods of 
time, but at different power settings. In this case study, physical models for the damage accumulation in 
several gas turbine components are used to compare the damage rates at different power settings 
(Smeding, 2012). 
From a FMECA analysis, the high pressure turbine blades, combuster cans and the turbine disk appeared 
to be the critical components in this gas turbine. The failure mechanism for these components are creep 
and fatigue, thermal fatigue and fatigue, respectively. For each of these mechanisms, the governing loads 
have been identified and the relation with the gas turbine usage has been determined. For the turbine 
blade, the stress and blade temperature are the governing loads for the creep and fatigue mechanisms. 
The stress can be estimated from the (monitored) rotational speed (ω), the blade mass (m), distance to the 
engine centre line (r) and the blade cross sectional area (A):

2m r
A
ωσ =    (2)

and the thermal strain caused by the temperature difference between the cooled inside (Tin) and heated 
outside (Tout) of the blade: 
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where α is the coefficient of thermal expansion and A and E are the blade area and elastic modulus. Using 
similar expressions for the other components, the fatigue and creep damage rates at different power 
settings (associated to certain levels of rotational speed and temperature) can be assessed, as is shown in 
Table 1. 

Table 1:  Relative damage per operating hour for the three critical components 

Power setting  Total Damage 
Turbine Blade

Fatigue damage 
Turbine Disk

Fatigue Damage 
Combustor Can

Dominant Damage 
Critical Component

1 0.2 0.50 0.01 Turbine Disk 
2 0.4 0.70 0.03 Turbine Disk 
3 0.6 0.82 0.11 Turbine Disk 

4 (normalized) 1.0 1.00 1.00 Turbine Disk 
5 17.8 1.25 5.25 Combustor Can 
6 1120.2 1.50 23.83 Turbine Blade 

As can be noticed, the damage numbers strongly depend on the power setting. The relation between 
creep and power setting is logarithmic, explaining the large number of total blade damage in the highest 
load zone. Fatigue damage shows an exponential relation with power setting. The results clearly show that 
operating in load zone 5 instead of 6, would already result in a much larger turbine blade life time and 
probably a much larger gas turbine life time as well.  
Application of these results in a predictive maintenance policy requires insight in the assumptions the OEM 
did to determine the maintenance intervals. These prescribed intervals are defined in terms of operating 
hours, but the results in Table 1 clearly show that one hour operating at power setting 4 is not equivalent to 
an hour at power setting 2. Since the assumed distribution over the power settings adopted by the OEM is 
known, the variation across a fleet of frigates can be studied and compared to the OEM assumption. This 
is shown in Table 2, where the calculated damage in two consecutive years, based on the actual number 
of hours in each power setting, is compared for four individual frigates. The final row of the table indicates 
the ratio of the actual damage and the OEM assumed amount of damage. 
For the fleet average usage profile, as well as for frigates 2 and 3, the maintenance intervals in terms of 
operating hours appear to be too long, so failures are expected. On the other hand, for frigate 1 and 4 the 
intervals are too conservative and maintenance is expected to be performed before it is actually 
necessary. This analysis clearly shows that a failure mechanism based predictive maintenance approach 
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makes it possible to tailor the maintenance activities to the specific usage profile of each individual system 
or asset. 

Table 2: Variation in damage rates (1/year) over fleet and compared to OEM assumptions of usage profile 

Frigate 1 Frigate 2 Frigate 3 Frigate 4 Fleet avg 
Year 2009 2010 2009 2010 2010 2009 -
Turb. blade 2.9·10-3 2.6·10-3 1.78·10-1 2.5·10-1 1.3·10-1 7.6·10-2 1.1·10-1

Turb. disk 8.7·10-3 3.9·10-3 1.1·10-2 9.3·10-3 5.5·10-3 4.4·10-3 7.1·10-3

Combustor 6.0·10-4 5.2·10-3 2.9·10-2 4.3·10-2 2.0·10-2 1.5·10-2 2.0·10-2

Factor OEM 0.1 0.1 2.1 2.9 1.6 0.9 1.2 

3.3 Military vehicle 
For this third case study a combat vehicle is analysed, see Figure 5. In this case no detailed physical 
models are applied to predict the maintenance intervals, but a more high level relation between usage 
profiles and degradation rates is used (Tiddens, 2011). The advantage of this approach is that less 
knowledge on the details of failure mechanisms is required and less time has to be spent on developing 
models. The consequence, however, is that the accuracy of the method is lower than for the previous two 
case studies, where detailed physical models have been used.  

Figure 5: Military combat vehicle 

From the CMMS data, the critical failure modes have been identified, either being a cost driver or a 
performance killer. Failure of the track pads appears to be one of the critical failure modes and excessive 
wear was identified to be the failure mechanism causing this failure. The governing loads for a wear 
mechanism are the normal load, specific wear rate and travelled distance (see eq. 1). This means for the 
track pads, that the terrain type is an important factor for the service life. Instead of defining a physical 
model and monitoring the loads, the usage of this vehicle is defined in terms of a limited number of usage 
profiles. With a focus on the terrain types, the relative severity for track pad wear is obtained by 
interviewing several experts. The results are shown in Table 3. 

Table 3: Relative severity of different terrain types for track pad wear 

Surface type Roughness of terrain 
Paved road 2.00 Flat 1.00 
Unpaved road 1.00 Hilly 1.25 
Light terrain 1.00 Mountainous 1.50 
Medium terrain 1.25 
Heavy terrain 1.50 

Then the usage of the vehicle is defined by specifying the distribution of the operating hours over the 
different terrain types, see Table 4. Now a usage of 800 kilometres in a certain period of time is analysed. 
By applying the fractions in Table 4 and multiplying by the severity factors from Table 3, the effective 
driving distance in each combination of surface type and roughness can be obtained, see Table 5. 
Summation of all nine contributions in Table 5 yields a total effective distance of 1432 km. This number 
implies that a nominal distance of 800 km at this usage profile causes damage to the track pads which is 
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equivalent to driving 1432 km at unpaved roads and light terrain roughness (which is the reference 
situation with relative severity equal to 1.0). The average usage severity of this usage profile is therefore 
1432 / 800 = 1.79. 

Table 4: Distribution of driving distance over surface type and terrain roughness 

Roughness Surface type 
Paved Unpaved Heavy terrain 

Light terrain 2 % 4 % 14 % 
Medium terrain 5 % 10 % 35 % 
Heavy terrain 4.5 % 15 % 10.5 % 

Table 5: Effective driving distance (km) for different combinations of surface types and roughness (800 km) 

Roughness Surface type 
Paved Unpaved Heavy terrain 

Light terrain 32 32 168 232 
Medium terrain 100 100 525 725 
Heavy terrain 106 180 189 475 
Total 238 km 312 km 882 km 1432 km 

It also means that for a vehicle operated with this usage profile, the maintenance intervals should be a 
factor 1.79 shorter than the intervals for vehicles only driving at unpaved roads and light terrain roughness. 
To conclude, this case study demonstrates that the effect of variations in usage of the system can be 
incorporated in the maintenance interval determination, without the development of complex physical 
models and detailed monitoring of loads or usage. By estimating the quantitative effect of different usage 
profiles on the system degradation, just specifying the functional usage (mission + context) enables the 
application of a much more dynamic maintenance policy. 

4. Conclusion 
In this paper a structured approach to set-up predictive maintenance policies is presented, where 
knowledge on the physical failure mechanisms and their governing loads is explicitly utilized. In three case 
studies the approach is demonstrated on real systems. In two case studies, the predictive method is based 
on physical models, while in the third case study a more functional approach is followed. In the latter case 
the functional usage of the system is defined by a limited number of usage profiles, which are then related 
to the degradation rates based on experience of experts. All three cases showed that understanding the 
failure process enables the application of much more dynamic maintenance strategies, which increase the 
maintenance process efficiency and effectiveness.  
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