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Effective asset management benefits from accurate information about the current health and expected 
future health of each asset. This information can be supplied by diagnostic and prognostic systems 
respectively, utilizing data from condition monitoring systems and inspections to derive status and likely 
future behavior. However, new prognostic techniques can face difficulties when transitioning from research 
tool to industrial deployment. 
Within the power industry there are two main drivers to improve asset management. First, the safety of 
personnel and members of the public may be compromised by a failure in service, so maintenance aims to 
pre-empt such failures. Secondly, more accurate prediction of future degradation can feed into a more 
efficient maintenance program, reducing costs through appropriate delay of repair and replacement. These 
drivers prompt a cautious interest in prognostic tools, countered by some reticence within traditional 
utilities to adopt new and relatively unproven technologies.  
This paper identifies issues which may hinder the deployment of prognostic techniques within the power 
industry. It considers two examples of diagnostic systems (for rotating plant within nuclear stations, and for 
power transformers) which progressed past the research prototype stage to deployed demonstrator 
systems, and one example of a prognostic system (for HV circuit breakers) which has not yet made that 
transition. Drawing lessons from these experiences, the paper extracts key factors which link the deployed 
systems, but are missing from the third.  
The paper concludes that structural issues are the main differentiators, including automated access to 
data, clear and concise user interfaces, and working with the engineers who will ultimately use the system. 
Trust in the algorithm is also important, and the paper outlines the techniques selected for the case study 
applications, with discussion of selected results. Once engineers are able to integrate prognostics into their 
processes, it naturally contributes to asset management strategy. 

1. Drivers for diagnosis and prognosis in the power industry 
Analysis of asset condition in the power industry is desirable to ensure safe and economical operation. It 
can also be a regulatory requirement for the asset class in question, with a number of disciplines requiring 
formal explicability of the decisions taken by asset managers. The examination of a wide variety data 
sources, often on a low-level basis, necessitates the development of automated techniques to avoid the 
problems of “data overload” on engineers. Intelligent systems have seen notable success in a wide variety 
of engineering maintenance and reliability applications, including the monitoring of rotating plant (Jardine 
et al., 2006), power transformers (Saha, 2003), aerospace (Borguet and Léonard, 2009) and nuclear 
reactor cores (West et al., 2012). The major advantages of improved condition monitoring techniques 
include the reduction of unplanned failures, consequently leading to increased availability, and deeper 
insight into the operating characteristics of assets. Many systems are of a complexity that negates the 
possibility of full physics-based understanding, therefore any component or process-level reasoning 
(knowledge-, model- or data-driven) can be argued to be worthwhile.  
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Asset diagnostics seeks to provide decision support regarding fault detection and classification. With the 
success of diagnostic applications across a wide variety of areas, an increasing interest has developed in 
the topic of prognostics (Schwabacher and Goebel, 2007). Prognostics encompass techniques inferring 
future modes of operation, fault prediction and reasoning about the remaining useful life (RUL) of plant. 
From an asset management perspective, the benefits of a successful prognostic system are clear. A 
combination of successful diagnostics and prognostics makes possible advances in condition-based asset 
management regimes, allowing engineers to schedule maintenance and operation more effectively. This in 
turn would reduce costs, through appropriate deferment of asset replacement or removal of needless 
maintenance, as long as the cost of a prognostic system does not outweigh the possible savings.  

1.1 Other industries 
Prognostic approaches have seen success in other disciplines. Many of the developed systems are reliant 
on adequate failure data in order to create the necessary predictive models, affecting which industries can 
attempt prognostics. With the relative difference in adoption between industries, it is useful to consider 
existing prognostic techniques when planning for the application of such approaches to a new domain. 
The large volumes of available data in the aerospace industry, along with the often critical nature of 
reliability in this sector, have allowed for noted progress (Batzel and Swanson, 2009, Saxena et al., 2008). 
Both defense and commercial aerospace have seen extensive developments, with application to both 
structural analysis (Roemer et al., 2005) and aircraft engine systems (Kallappa and Hailu, 2005). The 
nuclear industry in the US has recognized the need for prognostics as part of their Light Water Reactor 
Sustainability program (Coble et al., 2012), though much of this is still in its infancy. Electronics has also 
seen a number of key research outcomes in recent years, with physics of failure models seeing success 
due to the wealth of first principles knowledge at the component level. The study of ‘life consumption’ 
(Ramakrishnan and Pecht, 2003) in particular would find application in the experienced duty cycle of 
systems beyond electronic components. While electronics systems may traditionally be considered simpler 
to model than power assets, successes in the aerospace industry mean prognostic techniques should not 
be discounted for power engineering any longer. 

2. Case study diagnostic systems 
Some success has already been achieved with deployment of diagnostic systems for power asset 
monitoring. This section details two such research prototypes. 

2.1 Rotating plant within nuclear power stations 
In close partnership with EDF Energy UK, the University of Strathclyde have developed and continue to 
augment a decision support toolkit geared towards the analysis of rotating plant items within the nuclear 
generation context. The Rotating Machinery Alarm Analyst (ROMAAN) system, designed for diagnostics 
and monitoring of steam turbine generators and Advanced Gas-cooled Reactor (AGR) gas circulator units, 
is built on a knowledge base comprised of vibration-based diagnostic expertise (Todd et al., 2007) 
augmented with statistical self-tuning techniques (Costello et al., 2011). ROMAAN combines knowledge-
based and data-driven diagnostics to provide a flexible and clearly explicable decision support function in 
the analysis of vibration alarms and modes of asset behavior. The major problem tackled by the system is 
the incidence of routine alarms in turbine generator operation; alarm instances that fire with no 
corresponding machine behavior change or damage. A rule base of heuristics was created in order to 
provide clear, crisp inference regarding alarm features from vibration data. Concurrently, a statistical 
tuning module (Costello et al., 2012) defines normality from machine data in order to optimize the 
inference procedure on a turbine-to-turbine basis. 
This allows for accurate diagnostics to be made on alarm examples provided to the system for multiple 
machines. The system identifies any underlying behavior responsible for the routine alarm firing, and the 
tuning capabilities negate model initialization, which is often encountered when generalizing analysis 
across an asset family. Providing this inference procedure in an automated and verifiable manner is 
particularly powerful in the analysis of large volumes of alarms, which is a common scenario in the 
monitoring of multiple assets. A major success of the project has been the integrated software design and 
deployment process, with dynamics engineers involved with conception and development throughout. This 
has been a key mechanism for ensuring any deployed software is fit for purpose and relevant to the needs 
of the end-user. A prototype for the system was launched mid-2012, allowing engineers to interact with the 
toolkit and become more familiar with the aims and processes of the system.  
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2.2 Power transmission transformers 
Power transformers are a key component of the transmission network, with a failure in service potentially 
destroying the transformer and surrounding equipment, or even harming personnel or members of the 
public. Since transmission transformers are often bespoke, design and manufacture of a replacement can 
take many months or years, during which time the network as a whole is less resilient to other failures. 
A widely accepted approach to transformer monitoring is dissolved gas analysis (DGA), where ratios of 
gases dissolved in the transformer oil are used to diagnose the presence of faults (Saha, 2003). Oil can be 
sampled either off- or on-line, with the levels of key hydrocarbons and other markers measured. However, 
the diagnostic ratios are set for new transformer oil, and do not account for the presence of markers due to 
historical events. For this reason, DGA should be coupled with an element of anomaly detection for 
transformers with historical problems or simply a long service record. 
Two particular transformers on the UK transmission network were reaching the end of their design life, and 
the utility desired to keep them in service while minimizing the risk of failure (Catterson et al., 2009). Over 
50 sensors were installed to gain an extensive picture of the health of both transformers. The sensor set 
included external temperature and vibration at various points on the transformers, internal oil monitoring 
(dissolved gases and moisture), and current and vibration of auxiliary systems (pumps and fans). In 
addition, the environmental conditions were monitored with a weather station and 3-phase transformer 
load currents. Measurements were recorded to a third party data warehouse every five minutes, which 
provided access via both a web site (for engineers) and a web service (for automated systems). 
A multi-agent system was designed and deployed to perform on-line analysis of this data. There were two 
types of analysis implemented: Conditional Anomaly Detection (CAD), in order to identify anomalous 
transformer behavior while reducing false positives (Catterson et al., 2010); and DGA, in order to present 
engineers with a familiar, commonly understood diagnostic to complement CAD. 
The system ran for 14 months, the first two months of which were used as training data for the anomaly 
detection. During the remaining 12 months, 21 anomalies were detected. Further analysis showed these to 
be due to sensor or logging errors, rather than transformer behavior. No change of transformer state was 
detected during this period, and the two transformers were decommissioned at a time suitable to the utility, 
rather than due to faults (Catterson et al., 2010). 

3. Case study prognostic system 
In comparison to transformers, circuit breakers are generally less costly to replace. However, they play a 
critical role in the protection system, operating rapidly to clear faults. There is a growing interest in on-line 
monitoring of breaker health, especially parameters such as the density of SF6 gas, which is used to break 
current by extinguishing the arc generated under high current flow conditions. If SF6 density drops to a 
critical level, termed the lockout level, the breaker is no longer guaranteed to extinguish the arc at its rated 
current. Such a breaker is considered to be in a failed state. This section describes a prognostic system for 
identifying decreases in gas density, and predicting time remaining until the lockout level is reached. 

3.1 Prognostic algorithm 
A one-box system for circuit breaker monitoring was installed on 11 transmission breakers. This system 
records multiple parameters, including daily SF6 gas density, calculated from measured gas pressure and 
ambient temperature. The first stage of SF6 analysis is to determine whether or not a leak exists 
(diagnosis), followed by prediction of RUL for leaking cases (prognosis). In the case of a leak, SF6 gas 
density decreases in a generally linear fashion, and therefore linear regression was chosen as the model.  
For each breaker, data was split into blocks of 50 data points (equating to 50 days), and linear regression 
using least squares was performed on each block (Rudd et al., 2011). This generated standard straight 
line equations, with the slope parameter m characterizing how gas density changes over time. 
First pass diagnosis considered a prediction window of around one year (350 d). If the breaker was 
expected to reach the lockout level within this window, it was diagnosed as potentially leaking. If predicted 
failure was over one year away, it was considered to be noise in the data causing a decreasing slope, and 
not a true indicator of an SF6 leak. This diagnosis was implemented by thresholding on m.
A prognosis of RUL was made by calculating the time at which gas density would equal the lockout level. 
This can be presented visually by extending the regression line until it crosses the lockout threshold, as 
shown in Figure 1. It can be seen than the data is relatively noisy, and statistical approaches were 
investigated for quantifying the resulting uncertainty (Rudd et al., 2011). The simplest of these was to 
calculate upper and lower bounds on the predicted RUL by shifting the regression line by one standard 
deviation in both directions (Figure 1). This gives a window of anticipated breaker failure, the width of 
which indicates the level of certainty in the prediction. 
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Figure 1: Regression line projected forward until lockout, with visual bounds on uncertainty. 

Results from one representative block of data for each asset are shown in Table 1. This shows two 
breakers diagnosed with a potential leak, one of which shows an RUL of 52 days, and the other with 336 
days. Given the high standard deviation of this last case, it was concluded to be not leaking. Ultimately, the 
utility replaced circuit breaker 11. 

Table 1: Results of circuit breaker diagnosis and prognosis 

Circuit breaker RUL (days) Diagnosis RUL window (days) Final conclusion 

1 4624 No leak n/a No leak 
2 2640 No leak n/a No leak 
3 2575 No leak n/a No leak 
4 1860 No leak n/a No leak 
5 1550 No leak n/a No leak 
6 1317 No leak n/a No leak 
7 1114 No leak n/a No leak 
8 760 No leak n/a No leak 
9 733 No leak n/a No leak 

10 336 Potential leak ±176 No leak 
11 52 Potential leak ±8 Lockout in 46–60 days 

3.2 Issues with deployment 
The approach detailed above was developed as a software system, which would rank the circuit breakers 
in a substation according to how urgently they required maintenance, based on the RUL calculations. This 
system was demonstrated to project partners, and agreed to be a useful tool for the partner utility (Rudd et 
al, 2011). However, there are some issues which have delayed progress towards an online prototype, 
even although all partners are keen to demonstrate this technology in the field. 
The main delay has been accessing data on-line. The development system utilizes spreadsheets 
downloaded directly from the one-box system, and is therefore currently an off-line tool. The utility was 
very supportive of allowing University access to the system, and granted site visits and credentials for 
remotely accessing one unit. However, a proprietary software tool was needed to connect to the unit, 
requiring a particular version of Windows without the latest security patches. This was incompatible with 
the University’s IT policy. Further, remote connection to this unit by utility engineers in the past had put the 
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unit into a failure state, necessitating a site visit for rectification. University researchers were reluctant to 
connect to this unit regularly, knowing that it may generate extra maintenance for the utility engineers. 
Secondly, the proprietary tool was designed for engineer use, not automated system use, and could not be 
programmatically induced to download data on a regular schedule. This meant any automated asset 
analysis still required an engineer to perform the data access, reducing the practicality of such a system. 
There are also challenges with presenting the output of the system to engineers. Attempts to quantify the 
uncertainty in the RUL prediction can lead to wide windows of possible failure. While the width of the 
window can be taken as an indicator of the certainty of the prediction (for example, an RUL prediction ±5 d 
may be considered more certain than an RUL prediction ±15 d), engineers without expert understanding of 
linear regression are less likely to draw this inference. The graphical presentation of training data, 
regression line, and upper and lower bounds was found to be far more intuitive than presenting simply the 
outcome, e.g. RUL of 52±8 d. 
Future work is expected to result in a prototype deployment of this system. However, the source of the 
data for such a deployment is unlikely to be the one-box system originally used for data collection. Once 
the data access issues have been robustly solved, researchers will promote the prototype more widely 
within the utility to increase the number of engineers interested in the prototype. This will increase the 
number of potential users, and hence the amount of feedback which can be given on the software.  

4. Discussion 
The case studies reported here show two examples of diagnostic systems which progressed from 
research concept through to deployed software prototype, and illustrate the benefits of automated data 
analysis for plant health monitoring within the power industry. The case study prognostic technique, in 
contrast, was shown to generate prognostic information about circuit breakers which the utility agreed 
would be beneficial to asset engineers, but as yet has not progressed past the stage of off-line proof-of-
concept software. Analysis of these projects suggests that certain structural issues are just as important as 
the accuracy of any technique being proposed. This section highlights some of these issues, which should 
be resolved before future prognostic systems are likely to progress towards deployed prototypes. 
Presentation: In delivering any potential prognostic metric for examination by the end-user, some thought 
is required regarding the way in which this information is presented. Given the often statistical nature of 
prognostic calculations, any system output will need to communicate the corresponding uncertainty or 
limits of the model to the engineer utilizing the decision support. This was attempted for the circuit breaker 
case by visually representing both the prediction and uncertainty bounds. 
Data: In cases such as that described here, access to data is a great challenge. However, it is not just 
access but also the quality and type of data which is important. For many areas of condition monitoring, 
one of the main obstacles facing the adoption of effective prognostic methods will be in the availability of 
labeled condition data. To generalize condition evolution from a training set for a particular asset class, the 
selected approach needs to consider the scope to which it purports to supply useful decision support and 
whether this is possible with the information available. Some application areas may simply not have the 
available data or tacit knowledge to attempt to build an accurate model of degradation. This is true where 
the nature of the assets themselves dictate the impossibility of an observable failure (nuclear reactor 
cores, for example, represent a non-replaceable structure). Numerous publications refer to the problem of 
‘censored’ or ‘suspended’ data, and there is discussion surrounding ways in which to circumvent any 
problems where the quality of available data is in question (Heng et al., 2009). 
Buy-in: Clearly, there must be support within the utility for the project, and specifically from the engineers 
who will be working with the prototype system. These engineers can assist with development by 
suggesting the preferred placement of information and order of tasks. As a simple example, the diagnostic 
threshold for leaking circuit breakers is calculated using the m slope parameter, but presented to 
engineers in terms of a time prediction. This type of task-specific knowledge can be difficult for system 
designers to identify unless a close relationship is built with the asset engineers. 
Algorithm: Finally, the engineers must have confidence in the algorithm itself. This can be difficult to gain, 
especially with intelligent system techniques which do not offer straightforward ways of presenting their 
output. This was a challenge for the transformer diagnostic system, which implemented conditional 
anomaly detection (CAD): a novel statistical approach to capturing relationships between asset condition 
and environmental parameters. The widely-recognized and understood DGA algorithms were implemented 
alongside CAD, giving engineers not only the new probabilistic interpretation, but also the more familiar 
traditional approaches to diagnostics. In cases where an anomaly was detected, engineers could examine 
individual parameters and DGA analysis in order to decide on the meaning of the anomaly. 
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5. Conclusions 
By presenting three case studies of power industry applications, this paper highlights the successes of 
diagnostic systems and the challenges for prognostics systems in this field. The ultimate goal is to develop 
a prognostic system which accurately predicts future health of key assets, to help deliver safe and 
economic operation by enabling condition-based maintenance. The selection of appropriate techniques in 
order to build trust in the asset life prediction is most important, but the accuracy of the technique alone is 
not enough to ensure deployment within industry. On-line access to the right type of data is key, coupled 
with asset degradation knowledge where such expertise exists. Presenting the conclusions of a prognostic 
system must be considered carefully, in consultation with the engineers who will be end users of the 
system, since the level of uncertainty in a future prediction can be hard to quantify and visualize. In short, 
the deployment and in-service use of the prognostic system places equally important requirements on 
system development as the technique itself. 
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