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The previous diagnostic strategy considering life cycle cost is generated based on the assumption that the 
test placement costs are independent with each other. In this paper, the problem based on non-
independent test cost is studied. A general algorithm is proposed to solve this problem. For the special 
scenario that the value of a placement function is binary, an algorithm with better computational efficiency 
is proposed. Computational experiment shows that our algorithms are capable of producing better results 
compared with the previous algorithms. 

1. Introduction 
Test sequencing problem is to construct a test sequence that achieves high fault isolation with low 
expected test cost. It is mostly formulated as an AND/OR graph search problem (Pattipati and Alexandridis, 
1990; Tu and Pattipati, 2003; Kundakcioglu and Unluyurt, 2007), and only the execution cost is considered. 
In our previous research, the test sequencing problem considering life cycle cost was addressed and 
studied (Zhang et al., 2013), where the execution cost at the application stage and the placement cost at 
the design stage were considered. Here, the execution cost means the cost to use a test (e.g., power and 
time consumed to perform a test), and the placement cost means the once off cost to design the test 
system (e.g., cost to buy a sensor, volume and weight occupation). 
However, in the previous research, the dependency relationships between the test placement costs are 
not taken into account (Zhang et al., 2013), which may not hold in the real-world systems. Indeed, it is 
possible that several tests compete or share a sensor or other test resources, which means that their costs 
are non-independent (Zhang and Hu, 2012). Taking a sensor detecting the voltage of alternating current 
for example, we can extract two features from the signal, i.e., amplitude and frequency. They are usually 
considered as different tests because the faults related to them are different, and their costs are set 
independently to generate a diagnostic strategy or the optimal sensor placement in the existing algorithms, 
which is unreasonable as they share the same sensor. Previous test sequencing methods either assume 
that the placement costs are independent or only consider the execution cost, which means that the 
results obtained may not be optimal as we wish. Consequently, we study this problem and proposed 
solution algorithms in this paper. It is formulated based on AND/OR graph searching. A general algorithm 
and an algorithm for the special scenario are proposed. 

2. Problem formulation 
We assume that the following information is available to formulate the problem: 

1) a set of m+1 system states 1 1{ , , , }m mS s s s += associated with the system, and their corresponding 

priori probabilities, 1 1{ , , , },m mP p p p +=  where 1ms +  denotes the fault-free state and (1 )is i m≤ ≤  denotes a 

fault state of the system and 1

1
1m

ii
p+

=
= .

2) a finite set of candidate tests 1 2{ , , , }nT t t t= , and the execution cost 1 2{ , , , }nCE CE CE CE=
corresponding to each test. 
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3) a finite set of test subsets 1 2{ , , , }uG g g g= , where each subset consists of a number of tests with 

non-independent cost. Let k
jt denote the test jt that belongs to kg , viz., { }kk jg t= . G  should 

satisfy
1

u
kk
g T

=
=  and k rg g = ∅  for k r≠ . Actually, G is a partition of the test set T .

4) a set of placement cost functions 1 2{ , , , }uCP cp cp cp=  corresponding to each element in G , which are 

the functions of the test selection state in each test subset , 1, ,kg k u= .

5) diagnostic dictionary matrix (D-matrix) ( 1)[ ] ,ij m nD d + ×=  where ijd is 1 if test jt can detect fault is , and 0 

otherwise. For the fault-free state, ( 1) 0m jd + = , 1,2,j n= .

6) execution times N  of the sequential fault diagnosis strategy in the life cycle period, which can be 
determined by the historical data or be calculated from the reliability data (Zhang et al., 2013), such as 

mTN
MTBF

= (1)

where mT  denotes the service life and MTBF is the Mean Time Between Failure of the equipment. 

The sequential fault diagnosis problem is generally formulated as an AND/OR graph search problem. For 
the test sequencing problem considering life cycle cost, the total cost of a diagnostic strategy is (Zhang et 
al., 2013)

e pJ N J J= ⋅ + (2)

where eJ is the execution cost of the diagnostic strategy, which can be found in (Raghavan et al., 1999; Tu 

and Pattipati, 2003). Let the binary variable set 1 2{ , , , }TnY y y y=  denote whether the tests are selected or 

not (1 or 0). k
jy  denotes whether k

jt is selected and Y satisfies
1

u
kk

Y Y
=

= , { }kk jY y= . pJ can be written as  

k
1

( )
u

p k
k

J cp Y
=

= (3)

Our problem is to find a test sequence that minimizes the cost J shown in (2).

3. General solution algorithm 
Let x denote an ambiguity node in the AND/OR graph, as shown in Figure 1, where jt is a test and 

{ , }jp jfx x  are the successive nodes corresponding to the pass and fail outcomes.

x

jt

jpx jfx

Figure 1: Ambiguity node x in the AND/OR graph 

The traditional test sequencing problem only considering execution cost can be solved using the AO* 
algorithm. For the problem considering life cycle cost, both the execution cost and placement cost should 
be taken into account. According to our previous research (Zhang et al., 2013), the optimal test at node x
in searching process is determined by  
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* ˆarg min{ ( ) ( , ) ( , )}e pj
j N P x h x j h x j= ⋅ ⋅ +  (4) 

where ˆ ( )
i

i
s x

P x p
∈

= . As the non-independent placement cost assumption does not impact the execution 

cost, ( , )eh x j can be estimated using the same strategy proposed in (Zhang et al., 2013). For example, the 
heuristic function proposed in (Pattipati and Alexandridis, 1990) based on Huffman code can be applied. 
Specifically,  

( , ) ( ) ( ) ( ) ( )e j jp e jp jf e jfh x j CE P x h x P x h x= + +  (5) 

where { ( ), ( )}jp jfP x P x  are the probabilities that jt passes and fails, { , }jp jfx x  are the successive nodes 

corresponding to the pass and fail outcomes as shown in Figure 1, { ( ), ( )}e jp e jfh x h x are the values of 

evaluation function.  
Details of diagnostic strategy generating algorithm ( AOL algorithm) can be found in (Zhang et al., 2013). A 
short summary is given in Figure 2. 

Figure 2: Summary of the AOL algorithm  

Equation (4) will be applied in the expanding process and backtracking process. As ( , )eh x j  is calculated 

according to (5), calculation of ( , )ph x j is the problem that needs to be studied in this paper.  Let ( , )T x j

denote the tests that have been applied on the path leading to node x and the path from x to the leaf 
nodes on the condition that jt is chosen as the next optimal test. We propose to calculate ( , )ph x j via

k
1

( , ) min ( )

 . . (1, ,1,0) ,
(1, ,1) ,

[ ],
{0,1}, ( , ), 1,

1, , ,
1, , ,

1, , 1, 1, , .

u

p kY k
T

T
i

i
i zv iv zv

v v v

h x j cp Y

s t DY
DY

D d d d
y t T x j y

i m
v n

z i i m

=

=

≥
≥

= = ⊕
∈ ∀ ∈ =

=
=

= − +

 (6) 

Note that we assume that all the faults can be detected and isolated by the available tests. If this 
assumption is not valid, the faults that have the same test signature (the rows in the D-matrix are identical) 
can be treated as an equivalent single fault state, and equation (6) remains valid. The problem shown in 
(6) can be seen as a generalized set-covering problem. As this sub-problem will be solved for many times 
in the AND/OR graph searching process (expanding and backtracking process), we propose a greedy 
algorithm here. Similar idea has been applied in the process to generate the feasible solution in (Zhang 
and Hu, 2012).
Define a similarity matrix based on ( , )T x j  to denote whether a fault can be detected and isolated, 

( 1)[ ]iz m mL l × += (7)

For i z≠ , if the test signatures of is and zs are identical based on ( , )T x j , 1izl = ; otherwise, 0izl = .  For 

i z= , ( 1)iz i ml l +=  .

Define a matrix ( 1)[ ]jj iz m mA a × += to denote the resolving ability of test jt , where  

(i) Initialize a graph G  consisting of a root node, which is the set of all the fault states. 
(ii) Select a leaf node in G and expand it according to (4). 
(iii) Backtrack based on the newly expanded nodes, update the heuristic function value, reselect the 

best branch via (4) and mark the optimal tree. 
(iv) Go to step ii until the stop criteria is satisfied. Exit with the marked tree as the diagnostic strategy. 
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ij zjj
iz

ij

d d i z
a

d i z
⊕ ≠

=
=

 (8) 

The symbol ⊕ denotes Exclusive OR operation. Then, the algorithm we propose to solve (6) is shown in 
Figure 3. In each iteration, the test that reduces the similarity most with the smallest cost is added to the 
solution. The algorithm stops once the feasible solution for (6) is generated. 

Figure 3: General algorithm 

4. Solution algorithm for a special scenario 
In the real world systems, there is a common scenario that the signal from a sensor can be transformed 
into several different tests, such as the tests extracted from the voltage sensor mentioned in section 1. It 
means that the placement cost function can be written as  

0 all the tests in  are not selected
( )

otherwise
k

k k
k

g
cp g

cp
=  (9) 

where kcp is the placement cost independent of the test selection state of kg . We call the function shown 

in (9) a binary function. In this scenario, a subset kg is termed as selected if any test in { }kk jg t= belongs 

to ( , )T x j . In order to improve the computational efficiency, we treat the tests in the set kg as a whole when 

designing the algorithms. Specifically, for i z≠ , if the test signatures of is and zs are identical on tests 
{ | is selected, 1, , }k kg g k u= , 1izl = ; otherwise, 0izl = .  For i z= , ( 1)iz i ml l +=  .

Similarly, the resolving ability matrix is defined for each test subset kg :

( 1)[ ]kk iz m mR r × += (10)

In (10), for i z≠ , 1k
izr = if the test signatures of the tests in kg between is and zs are different, and  0k

izr =

otherwise. For i z= , ( 1)
k k
iz i mr r += . The algorithm for the special scenario we proposed is shown in Figure 4.  

Figure 4:  Algorithm for the scenario with binary placement cost function 

(i) Define a variable 0hp = ;

(ii) Select kg ′ via

1

1 1

{1,2, , }
is not selected

arg max
k

m m
k
iz iz

i z

k u
kg

r l
k

cp

+

= =

∈
′ = ;

(iii) Set kg ′  as selected, khp hp cp ′= +  and update the matrix L ;
(iv) If L ≠ 0 , go to step (ii); 
(v) Exit with ( , )ph x j hp= as the result. 

(i) Define a variable 0hp = ;

(ii) Select test jt ′ via

1

1 1

{1,2, , }
0 1 0

arg max
( ) | ( ) |k k

j j j

m m
j
iz iz

i z

j n
k k k ky y y

a l
j

cp Y cp Y

+

= =

∈
= = =

′ =
−

, where k is the index that statisfies j ky Y∈ ;

(iii) Set ( , ) ( , ) jT x j T x j t ′= , 1jy ′ = ,
1 0

( ) | ( ) |k k
j j

k k k ky y
hp hp cp Y cp Y

′ ′= =
= + − and update the similarity matrix 

L defined by (7); 
(iv) If L ≠ 0 , go to step (ii); 
(v) Exit with ( , )ph x j hp= as the result. 
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5. Computational experiment 
In this section, the proposed algorithms are simulated and compared on the systems of{ 10, 15}m n= = .
For comparison, simulations are also carried out using the AOL algorithm proposed in (Zhang et al., 2013)
and the AO* algorithm proposed in (Pattipati and Alexandridis, 1990) based on the 3HEF heuristic 
evaluation function (Pattipati and Alexandridis, 1990), where the placement costs are assumed to be 
independent and neglected, respectively. All the simulations were carried out in MATLAB on a PC with 
2.53 GHz CPU, 2GB RAM. Results shown in Table 1-Table 4 are averaged over 50 Monte Carlo runs. We 
assume that the placement costs of at most 3 tests are non-Independent. The D-matrixes are generated 
randomly with an average density of 40% (percentage of ones in a D-matrix), with the assumption that all 
the faults can be detected and isolated. The execution cost of each test is generated randomly in [0, 1]. 
Let f  denote the function value that  tests related to a placement cost function (element inCP ) are 
selected. The values of placement cost function are generated by  

1max({ })f f h r−= + ⋅ (11)

where r  denotes a randomly generated fraction between 0 and 1, and h denotes a specified positive 
integer. Equation (11) will guarantee that the test cost will increase when more tests are added to the 
solution, which is practical in the real-world. The variable h is set to denote the strength of the cost 
dependences. A smaller value means that the tests share more resources, and a larger value means a 
stronger competition relationship between the tests. It is evident that 0 0f = , which means that the 

placement cost should be zero if  no test is applied. In our simulations, h is set to 0, 2 and 4 respectively. 
N has the values 0.1, 1, 10, and  100. Note that it should be larger than 1 in the real world systems. The 
reason that N can take the value less than 1 in the simulation is that N  is set to test the influence of the 
weight of placement cost on the performance of different algorithms. The results are shown in Table 1-
Table 4.  In the special scenario, the value of a placement cost function is either 0 or in [0, 1], i.e.,  

kcp shown in (9) satisfies [0,1]kcp ∈ , 1, ,k u= .  In order to compare the results in a more clearly way, the 
costs obtained by different algorithms are divided by those obtained by AO* Algorithm. 

Table 1: Simulation results for the general cases (h=0) 

AO*  AOL Proposed algorithm N
time(sec) cost  time(sec) cost time(sec) cost 

0.1 0.028 1  0.203 0.490 2.416 0.437 
1 0.030 1  0.600 0.704 5.230 0.672 
10 0.030 1  0.338 0.999 3.537 0.995 

100 0.028 1  0.133 1.012 1.761 1.014 

Table 2: Simulation results for the general cases (h=2) 

AO*  AOL Proposed algorithm N
time(sec) cost  time(sec) cost time(sec) cost 

0.1 0.029  1  0.206  0.638  1.480  0.422  
1 0.031  1  0.556  0.718  3.978  0.566  
10 0.032  1  0.335  0.956  3.915  0.942  

100 0.031  1  0.174  1.005  2.113  1.010  

Table 3: Simulation results for the general cases (h=4) 

AO*  AOL Proposed algorithm N
time(sec) cost  time(sec) cost time(sec) cost 

0.1 0.031 1  0.243  0.601  1.636  0.286  
1 0.032 1  0.511  0.618  3.421  0.416  
10 0.031 1  0.332  1.024  4.094  0.869  

100 0.029 1  0.154  1.007  2.128  1.004  
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Table 4: Simulation results for the cases with binary placement function 

AO*  AOL Proposed algorithm Algorithm for the special 
scenario N

time(sec) cost  time(sec) cost time(sec) cost time(sec) cost 
0.1 0.032  1  0.225  0.500  3.102  0.398  1.043  0.397  
1 0.032  1  0.398  0.773  4.198  0.691  1.283  0.688  

10 0.032  1  0.361  1.011  4.348  1.001  1.172  0.999  
100 0.036  1  0.181  1.008  2.602  1.006  0.685  1.005  

Form the simulation results shown in Table 1-Table 3 we can see that the proposed algorithms are 
effective to solve the test sequencing problem based on the non-independent test placement cost. Better 
results (the solutions with less cost) are obtained compared with the previous algorithms, especially when 
N is small and h is large. When N is large (N=100), the results obtained by all the algorithms are almost 
the same. This is because the placement cost only constitutes a tiny part of the total cost. For the cases 
with binary placement cost function, the computational time of the special algorithm is shorter than that of 
the general algorithm, with a result that has a slightly less life cycle cost, as shown in Table 4. 

6. Conclusions 
The test sequencing problem considering life cycle cost based on the tests with non-independent 
placement costs was studied and formulated in this paper. A general algorithm and an improved algorithm 
for the special scenario were proposed. Computational experiments were carried out to test the algorithms, 
which showed that they can produce better results than the previous algorithms. In the scenario that the 
placement cost function is binary, the improved algorithm has a better computational efficiency than the 
one for the general cases. 
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