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Planning, designing, and implementing a prognostics system requires a systematic approach stemming 
from business needs to system deployment.   Since prognostics make a fit for service assessment of 
specific assets, the systematic approach begins with a service needs assessment.  Given a specific asset 
or collection of assets, the level of abstraction is defined along with performance metrics.  Next, an 
assessment of data driven, model driven, or hybrid approaches is reviewed to arrive at a prognostic 
methodology.  With the methodology in place, sensors and data acquisition systems form the data 
acquisition plan. With the data acquisition plan, deployment and experiments are conducted to test and 
evaluate the prognostic system.  Finally, a cost benefit analysis is performed prior to deployment and 
during testing to determine the solution feasibility, both technically and financially. 

1. Introduction 
Predictions of process machine state and reliability have been of concern in the chemical applications for 
many years.  For example, Zio et al. (2012) describes the need to predict reliability to aid engineering 
decision making.  The work describes the use neural networks to predict the reliability of diesel engine 
turbochargers used in chemical applications.  Another work of Medina et al. (2011) describes the 
importance of detecting and predicting degradation of process equipment.  Here, the importance of safety 
as a risk factor coupled with the degradation of the equipment is used to guide equipment inspection 
strategies.  Predictive algorithms including neural networks and support vector machines may also be used 
in predictive control applications.  In the case of semiautogenous mills, prediction of machine state is 
useful inputs for the control system when optimizing energy consumption (Curilem et al. 2011). A final 
example of work in predictions of process machine state is the use of a non-linear model of a oil drilling 
system to predict pore and fracture pressures such that the control system can operate the equipment at 
desired pressure levels (Vega et al. 2011).  Without the adaptive and predictive control, there exists higher 
risk of formation damage.   
In each of these examples, predictions play a role in operations of equipment and scheduling of 
maintenance activities.  While the above works, describe specific algorithms used, there exists an 
overarching need for reliability and maintenance purposes of a design process for prognostics applications 
used within chemical industries.  Here we introduce a systematic approach to design and implementation 
of a prognostics system. 
The systematic approach to prognostics design and implementation is a seven step process starting with 
problem formation that includes the goals of the prognostic program.  With business impact goals in hand, 
subsequent steps include a) asset level of abstraction, asset prioritization, and failure mode selection; b) 
prognostic method selection, either data driven, model based, or a hybrid of the two; c) a data acquisition 
plan for live monitoring of assets; d) definition of deployment strategy including data acquisition 
deployment, baseline development, and validation; e) financial feasibility and f) project execution.  This 
paper provides detail on each of the seven steps and concludes with an example in power generation. 
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2. Problem formation 
The first step in problem formation is determining the stakeholders and their needs.  Typically, there are 
three classes of stakeholders: the end user of the machinery or asset, the equipment maker or machinery 
OEM, and the asset maintenance or service provider.  Within these three classes of stakeholders, there 
are specific service need goals which may include machine or asset uptime, prevention of failures by early 
detection and warning, human and asset productivity improvement, product lifecycle management, 
maintenance system streamlining, and improved information management. 
An end user stakeholder, such as a power generation facility, may prioritize goals in the areas of human 
productivity improvement, machine uptime, and maintenance system process streamlining.  A machinery 
OEM stakeholder, such as a pump manufacturer, may prioritize goals of product lifecycle management 
and asset information management. A service provider stakeholder, such as a maintenance service 
contractor, may prioritize goals of machinery or asset uptime and failure prevention.  Even within these 
three stakeholder groups, goals may vary depending on the individual stakeholder’s environment. 
Three other terms may be used to describe project scope.  These are root cause analysis, condition based 
maintenance, and prognostics.  Root cause analysis is a method used to identify the underlying “root 
cause” of the problem. Root cause analysis directly relates to failure prevention, by eliminating the root 
cause of a specific failure.  Condition based maintenance focuses on trends and changes in condition or 
performance indicators. If the condition or performance indicators indicate or trend towards an abnormal 
condition, some form of maintenance is recommended. The end benefit of condition based maintenance is 
both productivity improvement and failure prevention, and may streamline some aspects of the 
maintenance process. Prognostics is the process of predicting (in time) system or system component 
deviation or degradation from its normal operating condition.  Prognostics has an impact on all six benefit 
areas with productivity and asset uptime often receiving the largest improvement. 
The goals of the stakeholder then translate into the goals of the prognostics application.  These goals can 
be translated into measurable results including productivity improvements, mean time between failures 
(MTBF), maintenance system efficiencies, and so on. 

3. Asset level of abstraction 
There are four typical system levels to consider in the prognostics design process.  These are a) the 
individual components of a machine or asset, b) the machine or asset itself, c) the process line or plant 
area, and d) the full system or plant.  In the case of a power generation plant, the level of abstraction 
reaches down to the machine component level including bearings within pumps, motors, and generators.  
When using the lowest level of abstraction, the component level, it is possible to roll up health indications 
and predictions to higher levels of abstraction or asset hierarchy. 
Within any level of abstraction, there will be several historical failures to consider.  By reviewing these 
historical failures, it is possible to prioritize the assets or components for inclusion in the prognostics 
design.  The prioritization process typically uses a frequency of failure occurrence versus impact to the 
business chart, Figure 1.  Impact may be measured financially, impact to output quality, impact to safety 
and environment, etc.  Within the chart, there are four regions of failures:  1) low impact low frequency, 2) 
low impact high frequency 3) high impact low frequency, and 4) high impact high frequency.  Traditional 
maintenance or time based maintenance or run to failure often address the low impact low frequency 
failures.  Adding spare parts to plant inventory often address low impact high frequency failures.  
Prognostics and condition based maintenance address the high impact low frequency failures.  For high 
impact and high frequency failures, a design change to the process, equipment of both is often required.  
By using this frequency versus impact prioritization technique, it is possible to identify failures best suited 
for condition monitoring and prognostics. 
Once the specific assets and components within the asset have been selected, common failure modes 
should be identified.  A failure mode effects and criticality analysis (FMECA) coupled with historical root 
cause analysis of historical failures, will lead to specific degradation patterns within the asset or component 
where the prognostics application should focus. 

4. Prognostic method selection 
With business goals and assets selected, the next step in the prognostics design and implementation 
approach is choice of prognostic method(s).  The prognostic method and model choice is either a data-
driven, model-based, or a combination of the two.  The selection process reviews availability of a) physics- 
based principles of failure b) current material and component conditions c) measureable symptoms, d) and 
availability of historical data for failure modes. 
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Figure 1: Frequency of failure versus impact         Figure 2: Sample sensors and condition indicating points 

If physics-based failure models are available and measureable symptoms can easily be related to the 
models, a model-driven prognostics technique may be appropriate.  If historical data from measurable 
symptoms is available and this historical data contains failure modes then data driven prognostics 
techniques may be appropriate.  Also, if material and component conditions are currently normal for the 
asset, a data-driven technique may also be appropriate.  Often, a combination of approaches is desirable.  
Test cell data from design verification testing or factory acceptance testing can provide normal behavior 
data sets.  Many mechanical components have accepted limits on calculated features such as vibration 
severity levels for which a simplified model can be inferred.  By combining data driven, and macro model 
driven approaches, a basic automated degradation detection and trending system becomes possible.

5. Data acquisition planning for live monitoring of assets 
There are two considerations in the data acquisition planning step.  The first consideration is identification 
of sensor and control system values which provide symptoms of performance and condition degradation.  
These condition indicating sensors and associated calculations form the parameters used by the 
prognostics algorithms.  The second consideration is complexity level driven by installation needs, data 
communication, and data storage.  Tradeoffs between measurable values and inferred values may be 
required based on feasibility of installation, communication, and data storage challenges. 
There are many sensors available for monitoring and control of machinery assets.  Many exist in the 
machine as a control related sensor, while others are added to the industrial asset for performance or 
mechanical health indicators, Figure 2.  Sensory information reported from the control system may include 
error codes, torque, cycle step, and so on.  These control system parameters are often useful in correlating 
the machine’s work and operating condition with measurements from installed sensors.  A third source 
data is the computerized maintenance management systems or CMMS.  The CMMS typically contains 
information about previous repairs, reported problems, component failures and so on.  Data from the 
CMMS supplements data from the control system and installed sensors adding timing information such as 
maintenance time windows, costs of repair, causal relations, and so on.  Each sensor individually or in 
combination with other sensors, maintenance data, and analytics provides condition indications which the 
chosen prognostics methods use to classify and predict developing failure modes. 
Each of the possible sensors is matched with expected degradation and failure modes of the asset and 
asset component. The cost and feasibility of installing or accessing sensors and associated data 
acquisition systems are assessed.  With choice of sensors, feasibility, and cost of data collection in hand it 
is possible to move to the next step, deployment strategy and experiments. 

6. Deployment strategy and experiments 
The fifth step in prognostics system design approach includes deployments of sensing and 
communications components along with experimental validation of sensors and prognostics models.  
Ideally sensor data, either from installed sensors or from existing data sources, is measured under 
consistent operating conditions.  In the case of a power generation pump, data recordings should be 
associated with corresponding speeds and loads to separate operating regime conditions from one 
another.  Automatic data recording is preferred over manual collections to enable consistent recording of 
sensors during each operating regime.  The data recording hardware should be connected to the 
prognostics or systems computing engine, to allow for on-line data feeds with the most up to data sensory 
data.  Finally, feature extraction calculations, such as a Fast Fourier Transform (FFT), should be 
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performed in-line as data arrives.  Either embedded or external computing resources can be used for 
feature extraction calculations. 
As sensors and data recording hardware and software are installed, experimental validation techniques 
are to be organized.  Sensor validation determines the ability to measure the condition indicator along with 
the range of errors.  Degradation of the sensor itself should also be considered.  In the case of data-driven 
components of the prognostic strategy, it is desirable to determine and establish baselines for normal 
conditions as well as any failure conditions.  This baseline establishment, or training, creates the basis 
from which deviations and degradations are measured. 
The prognostics models are likely to need tuning and adjustment.  For example, principal component 
analysis (PCA) techniques help isolate those feature calculations from sensor data which are best 
indicators of degradation towards a specific failure mode. Models may need adjustment to accommodate 
the adjusted feature inputs.  Physics based models in the system may also need tuning to improve the 
representation of the true behavior of the machine.  

6.1  Prognostic testing and validation strategies 
Three strategies to consider for validation of sensor and prognostic methods include a) out-of-process 
health assessment with fixed operating conditions and known failure conditions, b) in-process health 
assessment with repeating machine operating conditions, and c) in-process adaptive health assessment 
with dynamic machine operation.  Each of these strategies presents challenges and benefits to the 
prognostics development team. 
While the out-of-process health assessment strategy may prove easy to implement and more robust than 
others, it may interfere with normal operation as the asset is taken off-line for testing.  Further, off-line 
testing provides controlled conditions, thus limiting the ability to detect a broader range of anomalies and 
degradation patterns.  However, it is a well defined program and has relatively low implementation effort 
from a failure signature development perspective. 
In-process health assessment strategies have the advantage of evaluating a full range of in-process 
degradation drivers.  Given the existence of sensors pre-installed in the machinery, this technique may be 
advantageous in mass production environments with many similar machines.  The challenge with in-
process repeating operating condition technique is aligning measurements with operating conditions.  The 
effort is slightly higher due to changing operating conditions and the desire to include multiple machines in 
the validation process. 
In-process health assessment is further complicated with operating conditions are dynamic and not 
repeating on a prescribed schedule.  The ability to evaluate in-process degradation drivers is a benefit, 
while the need to build a larger data set of baselines is a challenge.  This technique requires a method to 
self organize measurements and condition indicators amongst varied operating conditions.  The dynamic 
operating conditions make this validation strategy more difficult. 
For balance of plant equipment in power generation plants, operating conditions are most often stable, and 
not changing.  A power generation plant often operates several machines and assets of similar class, 
make and model.  This power generation balance of plant scenario, then is well met with the strategy to 
perform in-process prognostic validation if needed sensor data is readily available or sensor installation is 
possible. 

7. Prognostic system feasibility and selection 
With a deployment and experimental strategy in place, the next step is to organize the prognostics 
development project with detail to required materials and labor costs.  Materials include sensors, cabling, 
data acquisition platforms, test bed apparatus, and software development tools.  Labor costs include 
installation labor, and software development labor. 
Material costs can be calculated with compilation of quotations from sensor and data acquisition hardware 
vendors.  Flexible data acquisition hardware and software will provide greater flexibility to adjust feature 
extraction and prognostic algorithms as the project develops.  Further, industrial grade sensors and data 
acquisition hardware enable shorter cable runs, thus positively impacting installation labor costs.  A 
software architecture which includes machine level connectivity, sensor fusion, feature extraction from 
sensor data, prognostics and machine learning algorithms, and dashboard visualization tools will facilitate 
lower labor costs in software development, Figure 3. 
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Figure 3: Sample dashboard visualization tools                Figure 4: Prognostics project execution process 

Labor costs include construction of test beds, installation of sensors and data acquisition hardware, and 
software development costs.  By itemizing these labor categories, the level of expertise to perform the 
labor and associated costs can be best estimated.  Labor costs should also include managing the 
prognostics system validation process and ongoing adjustments to feature extraction, PCA, and 
prognostics methods. 
With estimated costs in hand, comparison can be made to desired benefits on a financial basis to 
determine whether the project should move forward.  Adjustments to the scope of testing and prognostics 
system may need adjustment to meet feasibility constraints. 

8. Project execution 
With the project plan in place, execution can begin.  A cycle of data collection, algorithm development and 
deployment, and validation of results repeats until the performance of the prognostic system is acceptable, 
Figure 4. 
Data collection begins with organization of existing data and baselines.  New data is collected from the test 
cell or from in-process systems.  Where feasible, data sets from expected failure modes should be 
organized and collected.  These data sets form the basis for algorithm development and deployment. 
Every sensor carries some information indicating the condition of a particular component in the asset or 
system.  A range of signal processing techniques can be used to extract the information or feature from the 
sensory data.  With condition indicators calculated from the sensors, health assessment techniques are 
deployed to develop degradation patterns and trends.  Prediction techniques are used to determine the 
rate and direction of the trend.  Diagnostics techniques are used to identify the liable cause of degradation. 
As the prognostic algorithms begin to predict a failure, validation of the prediction should be conducted 
with asset specific subject matter experts.  During the validation process, adjustments to sensors, feature 
extraction algorithms, prediction algorithms and diagnostics algorithms are made until a consistent and 
acceptable prognostic system performance is met. 

9. Case study: Prognostics systems design and implementation in power generation 
In the power generation industry, workforce optimization and uptime of generating equipment are 
predominant needs of this equipment end user.  Two classes of machinery are in use at power generation 
plants, the turbine generators and balance of plant pumping systems.  Turbine generators are highly 
instrumented as part of the core control systems and are well monitored.  However, balance of plant 
equipment lacks instrumentation.  As a result, maintainers of balance of plant equipment spend a lot of 
time manually gathering and evaluating sensor data from important balance of plant equipment.  Hence 
the scope of this prognostics system is balance of plant pumping equipment with benefit goals of reduction 
of labor costs for manual efforts coupled with improved uptime and reliability of plant equipment. 
Fortunately, sensors and data acquisition equipment costs are more economical today, presenting an 
opportunity to permanently install sensors and automatic data collection hardware. Using rugged industrial 
sensors and data acquisition hardware, along with wireless communications, cabling costs are also 
minimized.  Initial sensors include vibration and temperature sensors to monitor degradation in roller 
element bearings, Figure 5. 
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Figure 5: Data acquisition system network for balance of plant pump monitoring and prognostics 

Feature extraction from vibration sensors is deployed in the data acquisition hardware.  These features 
indicate the presence of excessive degradation inducing stress.  The features are posted to the plant 
historian where trending and anomaly detection algorithms can analyze features along with supporting 
plant process parameters.  With trending and anomaly detection, plant equipment maintainers can now 
focus attention on specific equipment identified by anomaly detectors rather than spending time collecting 
and analyzing data manually.  The expected benefit of maintenance worker time optimization is expected 
to exceed the cost of sensor and data acquisition system deployment. 
In 2013, data collection systems are deployed.  Feature extraction and anomaly detection algorithm 
applications are under development and evaluation.  Currently, benefits continue to exceed costs, making 
the power generation balance of plant prognostics project a success in the works. 

10. Conclusion 
Using the systematic process described here, a prognostic design and implementation project can be 
evaluated for expected costs and benefits prior to deployment and execution.  Given a positive cost benefit 
analysis, a methodic trial deployment is implemented, adjusted and tuned, and validated for performance 
of predictions.  With lessons learned from the validation process, the prognostics project can be rolled out 
in a fleet wide manner, expanding the baseline data sets, failure mode signatures, and business benefits to 
the organization employing the prognostic system. 
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