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Uncertainties exist in fault prognostics systems can lead to inaccurate results and this will lead to 
unnecessary or delay maintenance activities. The uncertainty must be considered carefully to achieve 
more effective engineering applications. Uncertainties have been classified as aleatory uncertainty and 
epistemic uncertainty. Aleatory uncertainty is also called objective uncertainty, irreducible uncertainty, 
inherent uncertainty, and stochastic uncertainty. Epistemic uncertainty is also referred to as subjective 
uncertainty, reducible uncertainty and state-of-knowledge uncertainty. A cognitive framework to aid in the 
understanding of uncertainties and techniques for mitigating and even taking positive advantage of them is 
presented. From the perspective of man-machine-environment system engineering, the framework is an 
attempt to clarify the wide range of uncertainties that affect prognostics system. The uncertainty sources 
are identified as three aspects (machine, environment, man). A general uncertainty management 
procedure is proposed. It mainly contains uncertainty identification, qualification, propagation and 
sensitivity analysis. For case illustration purpose, the popular data-driven prognostics methods are 
discussed in detail. Current and developing methods for dealing with uncertainties are projected onto the 
framework to understand their relative roles and interactions.  

1. Introduction  
Prognostics is the process of predicting the future reliability of a product by assessing the extent of 
deviation or degradation of the product from its expected normal operating conditions (Pecht, 2008). 
Implementing prognostics can bring lots of benefits (Sun, 2012). Although the benefits of prognostics are 
impressive, prognostics technologies are still not mature enough for effective engineering applications. 
One of the major challenges for prognostics is the need to develop methods that are capable of handling 
real world uncertainties that lead to inaccurate predictions (Sun, 2012).  
When the prognostics results are used to support the condition-based maintenance (CBM) decision, it is 
more important to consider the effects of the uncertainty sources on the predictive remaining useful life 
(RUL). The calculation of RUL alone does not provide sufficient information to form a decision or to 
determine corrective action. Without comprehending the corresponding measures of the uncertainty 
associated with the calculation, RUL projections have little practical value (Engel, 2000). 
Some previous work has presented RUL results without any uncertainty measure (Celaya, 2012). 
Presently, research on prognostics has paid much attention on uncertainty analysis and treatment. Gu 
(2007) studied various sources of prognostic uncertainty. In their study, they utilized a sensitivity analysis 
to identify the dominant input variables that influence the model output. Orchard (2008) introduced a 
particle filtering based uncertainty representation and uncertainty management approach, in which the 
parameter uncertainty is the main object of the analysis. Besides, evaluating prognostic performance 
should also consider the uncertainty of the prediction results. Liu (2012) considered the uncertainties of the 
prognostics and the true data of the system when evaluating the online prognostics performance. 
In order to guide the study of the prognostic technology incorporating the uncertainty management, this 
paper provides a cognitive framework for systematic identifying and analyzing the various sources of 
uncertainty. A general procedure of the uncertainty management is proposed. The general data-driven 
prognostics methods are analyzed in detail for the purpose of illustration.  
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2. Cognitive framework of prognostics uncertainty 
From the perspective of the man-machine-environment system engineering, the predicted system can be 
regarded as a machine, prognostics can be regarded as the process of the user (man) cognizing the 
changing of the fault states of the machine in certain environment, which means prognostics system is a 
complex man-machine-environment system. The interactive relationships between the three parts are as 
follows: human monitoring the parameters of the machine and environment, pre-processing the monitoring 
data and establishing the prognostics model to understand the predicted machine; further predicting the 
future fault state of the machine with the monitoring data and the prognostics models. The cognitive 
framework of prognostics uncertainty can be derived from the man-machine-environment perspective, as 
illustrated in Figure 1.  

Figure 1: Cognitive framework of prognostics uncertainty 

Uncertainty sources are the carriers of uncertainties, which exist in man-machine-environment system in 
static and dynamic forms. Uncertainty sources in static form refer to the geometric parameters, material 
physical properties of the predicted system and the load environment (environmental and work load). Such 
uncertainty sources refer to the inherent variation associated with the physical system and its environment. 
It is commonly called aleatory, variability, irreducible or stochastic uncertainty (Zio, 2009). It cannot be 
reduced with the improvement of human cognizing. This type of uncertainty is too large will lead to the 
future fault state of the predicted system can’t be regard predictable. Uncertainty sources in dynamic form 
reflected in the process of people cognizing and treating the machine-environment system. This kind of 
uncertainty includes measurement errors, pre-processing errors, and cognition fuzziness of the failure 
criteria and approximation of the prognostic model structure. Figure 1 illustrates the static uncertainties 
lying in man, machine, load environment and prognostics method. It also point out that the dynamic 
uncertainties would generated when people cognize and treat the static uncertainties of the load 
environment and the predicted system (machine).  
These uncertainty sources contain subjective and objective uncertainty because of people cognizing the 
machines with object uncertainty. Subjective uncertainty derives from some level of ignorance or 
incomplete information of the system or the surrounding environment (Cullen, 1999). Due to the limitation 
of human knowledge, data incompleteness, data unreliability or information fuzziness, people cannot 
recognize exactly the true behaviour of the predicted machine. When monitoring the parameters data, the 
measure behaviour and the choice of measure instruments or sensors bring subjective uncertainty 
inevitably. With improved methods, more accurate measure instruments or sensors and deeper 
investigations, subjective uncertainty can be reduced. Reducing the uncertainties to objective uncertainty 
is the final aim of uncertainty management research. Uncertainty management research also laid the 
basement for prognostics performance evaluation with the uncertainties.  

3. Uncertainty sources analysis 
The identification of uncertainty is the basis of the uncertainty management. According to the cognitive 
framework of prognostics uncertainty, the uncertainty sources are identified as three aspects:  
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“Machine”: Machine refers in particular to the predicted systems. More Specific uncertainty sources can 
be derived from “machine”, such as geometrical parameters and material physical properties of the 
machine. Such uncertainties of these uncertainty sources are objective uncertainty.  
“Environment”: Environment means load environment including working load and environment load. The 
predicted machine works in certain environment, which has great effects on the degradation of the 
machine and should not be ignored. The uncertainties of “Environment” are also objective uncertainty.  
“Man”: Man is the cognition subject of the machine-environment system. The results of treating to the 
predicted system contain subjective uncertainties and objective uncertainties. People take part in every 
step, from monitoring data to establishing the prognostics method of the prognostics system. Every step 
has several uncertainty sources such as data collecting uncertainty, data preprocessing uncertainty, failure 
criteria assessing uncertainty and prognostics methods establishing uncertainty.  

Data collecting: Monitoring data needs measure instruments or sensors. However, more than one 
measure instruments or sensors could be chosen, which will be affected by the cost or the presence of the 
measure instruments or sensors or individual preference. More choices will generate chosen random 
uncertainty. Besides, no measure instruments or sensors can monitor completely exact data that means 
measure errors being inevitable. The located position of sensors also affects the data accuracy. 

Data preprocessing: Experience has shown that even the simplest data collection systems can 
accumulate vast amounts of data quickly, requiring either a frequent download procedure or a large 
capacity storage device. In order to reduce the storage space, data-logger CPU loads and suitable for 
prognostics model, the data collected should be reduced. Data reduction methods conclude ordered 
overall range (OOR), rain flow cycle counting, range-pair counting, peak counting, level-crossing counting, 
fatigue meter counting, and range counting and so on. Due to more than one data reduction methods, the 
choice of the method has random uncertainty. Different data reduction methods have different processed 
results, which result in different prognostics results. Besides, the vast data collected contain noise and 
other disturbances inevitably. Noise reduction and data feature extraction should be carried out and the 
corresponding methods have more than one, which will bring in chosen random uncertainty.  

Failure criteria assessing: When the fault feature data grow to a predefined value, the predicted 
system is regarded failure. The predefined value is called threshold, which is assessed and defined 
beforehand. However, sometimes the failure threshold values of the predicted systems are not specific. 
They have random and fuzzy uncertainty. For example, in Miner’s rule, the failure criteria values have a 
chosen interval [0.5, 2]. They have subjective uncertainty when predefining the threshold values.  

Prognostics methods establishing: Completely depicting the action of the fault state changing of the 
predicted system is difficult or impossible. Therefore, when setting up a prognostics method, approximate 
treatment principal is used. Different approximate treatment principals result in different structures of 
prognostics methods. Prognostics methods with different structures exist even to the same failure 
mechanism. The parameters of the prognostics methods also have uncertainty. For example, in Basquin’s 
model, Steinberg (2000) using 6.4, while Mil-Std-810G (2008) using 4 as the fatigue constant. 
The uncertainty sources stated above always fuse together. The fused uncertainties reflect on the input 
parameters, failure threshold and the prognostics method. For example, the parameters of the load 
environment incorporate the load data uncertainty, data monitoring uncertainty and data measuring 
uncertainty. Several low level uncertainties fusing can result in high level uncertainty. For example, the 
uncertainty of the fault feature parameters generates from the interaction of the uncertainty sources of the 
predicted system and the load environment uncertainty sources. High level uncertainty should be focus on 
when using the fault feature parameters to predict fault. When no high level uncertainty directly used, the 
subjective uncertainty should be focused on. Subjective uncertainty can be reduced and reducing such 
uncertainty is important in uncertainty management of prognostics. 

4. General uncertainty management procedure 
The most generally used term in the context of uncertainty is that of uncertainty management (Celaya, 
2012). Uncertainty management is regarded to include uncertainty source identification, uncertainty 
qualification, uncertainty propagation and uncertainty feedback procession. The implementation procedure 
of uncertainty management is illustrated in Figure2.  
Uncertainty sources identification is the first step of uncertainty management. The uncertainty qualification 
is following as the second step. Then the uncertainty qualified should be propagated from the input 
parameters and threshold to the prediction results. In uncertainty propagation, the uncertainty may be 
magnified. Therefore, the prediction results need to be evaluated and confirmed whether the uncertainty of 
the prediction results satisfy the user’s requirement. If the requirement is satisfied, the prognostics results 
can be accepted. Otherwise, the feedback is needed. In the feedback, sensitivity analysis is carried out to 
rank the importance of the uncertainty sources. Then the important uncertainty sources will be processed 
more carefully, such as collecting more data or changing prognostics method, to reduce the predicted 
results uncertainty. Sensitivity analysis can be also carried out in the process of the uncertainty sources 
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identification. By sensitivity analysis, the uncertainty sources that have tiny effects on prognostics results 
will be picked out and be processed as fixed values in prognostics, which can simplify the prognostics 
work. 

Figure 1: General uncertainty management procedure of prognostics system 

(1) Uncertainty sources identification: Uncertainty sources have been identified systematically in part 3 
according to the cognitive framework of prognostics uncertainty. In specific application, the uncertainty 
sources identified should be in accordance with the real application.  
(2) Uncertainty qualification: Uncertainty qualification refers to representing the uncertainty in some 
mathematical formulas. Presently, the main areas of research in uncertainty qualification can be organized 
as probability-based methods, possibility-based methods and set–theoretical methods (Lopez, 
2010).Figure 3 further depicts the strategy for uncertainty qualification. 

Figure 2: The strategy for uncertainty qualification 

In uncertainty qualification methods, the probability theory is the most common method in prognostics 
(Oberkampf, 2004).When sufficient data information is available, probability distribution can accurately 
represent the random uncertainty. However, in real application, the information is always not sufficient, 
which results in lots of reducible uncertainty in prognostics uncertainty (Lopez, 2010, Zio, 2009). 
(3) Uncertainty propagation: How to propagate the input uncertainty to the prognostics output results is a 
key point of uncertainty management. Presently, the uncertainty propagating methods include Monte Carlo 
method, improved Monte Carlo methods such as stochastic response surface method (SRSM), stochastic 
finite element method (SFEM), and interval-based method (Gareth, 2008).  
Monte Carlo method is a common method used to propagate the uncertainty in prognostics because of its’ 
wide adaptability. However, Monte Carlo method is a time-consuming method and the time consumed 
improves as the sampling times improve, which may lead to the timeliness of the prognostics dissatisfying 
users’ requirement. The timeliness is an important metric of the prognostics performance. For the time-
consuming shortcoming of Monte Carlo method, researcher developed several improved methods, in 
which SRSM and SFEM both can reduce the running time. 
Interval-based method is applied when the uncertainties is qualified by interval numbers. Interval numbers 
have specific rules for the standard arithmetic operations of addition, subtraction. Therefore, the 
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uncertainties qualified with interval numbers can be easily propagated to the predicted results by the 
predicted models or related transfer functions. The predicted models or related transfer functions must be 
monotonic or the Interval numbers based calculation method does not work.  
(4) Sensitivity analysis: Sensitivity analysis is the study of how the uncertainty in the output of a 
mathematical model or system (numerical or otherwise) can be apportioned to different sources of 
uncertainty in its inputs (Saltelli, 2008). Sensitivity analysis plays an important role in uncertainty 
management, which can be carried out in the design stage and feedback revised stage. In design stage, 
sensitivity analysis helps to find the important uncertainty sources of prognostics. Focusing on these 
important uncertainty sources will assist to improve the prognostics model. In feedback revised stage, if 
the uncertainty of the predicted results dissatisfy users’ requirement, the important uncertainty gained by 
sensitivity analysis should be processed further in order to reduce the uncertainty of the results or consider 
changing the prognostics method.  
Sensitivity analysis can be divided into local sensitivity analysis and global sensitivity analysis. Local 
sensitivity analysis is simple but does not consider the interaction of the variables. Global sensitivity 
analysis considers the interaction of the variables. Therefore global sensitivity analysis is more truthfulness 
when the variables are not independent. Gu (2007) has analyzed the uncertainties of the prognostics of 
the printed circuit board working in random load environment, where the global sensitivity analysis and 
local sensitivity analysis were applied. The analysis result shows that the effect of the input uncertainty 
sources interacting together on the output uncertainty is smaller than the sum of the effects of the input 
uncertainty sources working separately.  
Presently, sensitivity analysis method mainly includes Monte Carlo method, SRSM, Pearson’s correlation 
coefficient method, the analytical moment based methods, the partial correlation coefficient methods and 
so on, where Pearson’s correlation coefficient method, analytical moment based methods can be applied 
to analysis sensitivity globally and the partial correlation coefficient methods can be applied to analysis 
sensitivity locally. The applicability of the sensitivity analysis methods depends on the structure of the 
prognostics methods as well as the uncertainty propagation methods. 

5. Uncertainty management for data-driven prognostics 

Figure 4: Uncertainty management procedure of the data-driven prognostics system 

Data-driven prognostics approaches use real data (e.g. online gathered with sensors or operator 
measures) to approximate and track features revealing the degradation of components and to forecast the 
global behaviour of the predicted system (Kamal, 2009). Data-driven approaches do not have specific 
function expression. The input data are the fault feature parameters of the predicted system working in 
certain load environment. According to the general procedure of uncertainty management and considering 
the character of the data-driven approaches, the uncertainty management of the data-driven approaches 
based prognostics system is depicted in Figure 4.  
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Uncertainty qualification of the prognostics methods based on data-driven approaches mainly focuses on 
the uncertainty of the fault state feature data. The uncertainty propagation method for data-driven 
approaches is mainly Monte Carlo method because that the data-driven approaches don’t have definite 
function expression.  While the Monte Carlo sampling, important sampling, the perturbation methods et al. 
are always chosen for sensitivity analysis. When the specific data-driven method is chosen, more 
specifically sensitivity analysis methods can be used, seen ref (Cai, 2008) in detail. 

6. Conclusion 
A cognitive framework of prognostics uncertainty is presented from the perspective of man-machine-
environment system engineering. Based on the cognitive framework, the uncertainty sources are 
systematically identified and analyzed from high level uncertainty sources to more specific uncertainty 
sources. Subjective uncertainties can be reduced, which is the focus of uncertainty management. The 
general process of uncertainty management for prognostics system is proposed. Uncertainty identification 
is the base of uncertainty management. The other parts of uncertainty management include uncertainty 
propagation and sensitivity analysis, which are all analyzed in detail. Based on the general process, the 
uncertainty management of typical data-driven method based prognostics system is analyzed. This study 
has guidance in implementing the uncertainty management of the prognostics system.   
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