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This paper addresses the problem of clustering stochastic deterioration processes in a Gamma process 
model-based framework. The process evolution is assumed to be described by realizations of Gamma 
processes. Complementary information is given by covariates which characterize the systems from which 
the realizations originate. The processes parameters depend on a partition of the covariate space. To 
identify the process parameters one need to cluster data taking into account the realizations and the 
covariates. The proposed method embeds both concerns by using an EM algorithm with side-information 
and a local a posteriori probability. The weight given to the Gamma process realizations with respect to the 
covariates depends on the importance of the neighborhood considered in the local a posteriori probability. 
Criteria related to the value of the parameter tuning this importance are proposed.  Simulated data is used 
to illustrate the clustering method and to study the influence of the parameter tuning the covariate 
influence on the error result and on the proposed criteria.  

1. Introduction 
When studying deterioration processes of systems, we are eager to find a good stochastic model which fits 
the degradation measurements in order to do some prognostic for example, such as estimating the 
remaining useful life. Gamma process was successfully applied for the modelling of monotonic and 
gradual deterioration. It has been satisfactorily fitted to various data such as creep of concrete, fatigue 
crack growth, and thinning due to corrosion (Van Noortwijk 2009). In some cases the degradation process 
depends on some characteristics (covariates) of the monitored system. It follows that the stochastic law 
that governs the degradation process changes with those covariates. Most of the time, the only available 
information about the process is a database which contains realizations of degradation processes, and 
their corresponding covariates. Thus one has to estimate the Gamma process parameters while taking into 
account their dependency with the covariates.  
This paper addresses the problem of clustering degradation measurements on systems with covariates, in 
a Gamma process model-based framework. The aim is to determine jointly the classes of the different 
process realizations of a given sample and the parameters of the Gamma process classes. 
In comparison with classical data clustering, the process classification problem involves realizations that 
are composed of several observations. Thus the knowledge that all observations of a realization originate 
from the same process has to be considered as side information. On the other hand, the knowledge of 
covariate can be considered as spatial data. Thus the clustering method has to consider both the attribute 
data proximity and the spatial data proximity as in (Ambroise and Govaert, 1998; Hu and Sung, 2006). So, 
the considered problem is a problem of spatial clustering with side information. 
The proposed method is based on the EM algorithm which is a classical approach in cluster analysis with 
mixture models (McLachlan and Basford 1988), and more specifically on the EM algorithm with side 
information proposed in (Shental et al., 2003). The spatial proximity is introduced by the consideration of 
the neighborhood whose influence can be tuned thanks to a parameter. The influence of this parameter is 
studied and criteria related to the value of this parameter are proposed. 
The paper is organized as follows. A general formulation of the problem and notations are introduced in 
section 2. Section 3 describes firstly the proposed solution for clustering the process realizations with 
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constraints of covariate and secondly criteria characterizing a clustering result. Numerical evaluations and 
discussions are reported in section 4 and we conclude the paper in section 5. 

2. Problem formulation 
The data we consider originates from N paths describing degradation process realizations. For each path

 ( 1 ),n n N= …  the data is composed of the attribute data nX ∈ X and the covariate nY ∈ ΩY
characterizing the system from which the path originates. 
The attribute set 1{ }n n NX = … is assumed to be a sample composed of K subpopulations which are all 
homogeneous Gamma process models. Each model is characterized by a parameter set ( , )k k ka bθ =
where 0ka > and 0kb > are respectively defined as the shape and the scale parameters of the Gamma 
process. The latent cluster labels directly related to the parameters kθ are described by 1{ }n n Nz z = …=
where nz k= means that the thn realization originates from the thk cluster.
The attribute data nX is a Gamma process realization meaning that nX is a time series: 

1 | |{( , ( ))} n
n n

n i Xi iX t x t = …= where | |nX is the number of values in nX and n
it is the instant number i  of 

realization number n . The increments, given by 1( ) ( )n n
i ix t x t −− with 0 0t = and ( )0 0x = , are independent. 

The density distribution of the increments, which depends on the time and on the parameter kθ , is given by 

( ) ( )( )1 11| , , ( )( , )n n n n n n
k i i i ii i k k kf x t x t t t a t t bθ −− −− = −Γ (1)

In the following, for simplicity we will use the notation ( | )n
k i kf x θΔ .

Besides, kθ is supposed to depend on covariates (also called spatial data in the following), and the 
formulation of that relation can be given by ( )k Yθ = Θ with Θ  an unknown function 1{ }KY k kθ =Ω → , which 
defines a partition on ΩY . In addition, we use the same regularity hypothesis as in most of the work of 
spatial clustering (Ambroise and Govaert, 1998): the data are considered to evolve slowly in geographic 
space ΩY , which means that two samples that are neighbors in ΩY are likely to belong to the same sub-
population k .
An example with 2 clusters and a two-dimension spatial data is given in figure 1 in section 4. 
The objective is to find out the unknown cluster labels 1{ }Nn nz = and consequently the Gamma process 
parameters ka and kb  such that paths in the same cluster originate from a process model with the same 
parameters and that clusters are coherent from a geographic point of view. The performance of a 
clustering result described by z and a parameter setθ , without consideration of covariate influence, can be 
measured using the log-likelihood given by 

| |

1 1 1
( ) ln ( | )

n

n

XK N
n

z i
k n i

l , f xθ θ
= = =

= Δz    (2) 

3. Clustering algorithm of Gamma process with covariate influence 
3.1 Proposed algorithm 
The proposed approach is based on the clustering method using Gaussian mixture models and the 
expectation-maximization (EM) algorithm (Celeux and Govaert, 1992). Besides, the side information is 
considered according to (Shental et al., 2003). 
The EM algorithm is an iterative method that produces a set of parameters that locally maximizes the log-
likelihood of a given sample, starting from a arbitrary set of parameters. It is often used to estimate the 
unknown parameters of a mixture. In that case the E step consists in calculating an estimation of the a
posteriori probability for each observation and the expected log-likelihood. The M step consists in 
computing the parameters that maximize the expected log-likelihood found on the E step. When a hard 
partition is sought, it is suggested in (Celeux and Govaert, 1995) to add an intermediate classification step 
between the E and M steps. 
In (Shental et al., 2003), an EM algorithm is introduced for computing Gaussian mixture models taking into 
consideration equivalent constraints between data points which determine whether points were generated 
by the same source. It is shown that the E step consists in computing the posterior probability by using the 
product of the conditional probabilities of all points into a chunklet. Using the notation introduced in section 
2, the posterior probability ( )m

nkc at iterationm that the path n belongs to class k , given nX and the parameter 
( 1)mθ − writes according to 
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=−

− −
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∏

∏
   (3)

For the problem of Gamma process clustering without covariate influence, the determination of the 
partition and the parameters is based on the mixture models with the constraint that observations in a 
same path belong to a same class. Since the aim is to determine a hard classification, an intermediate 
classification step is added between the E and M steps, as in (Celeux and Govaert, 1995). It follows that 
the algorithm is the following one. 

• Initialize the parameter set (0)θ
• Repeat until ( ) ( )( ) ( ) ( )( )1 1, ,m m m ml lθ θ ε− −− <z z

o Compute the ( )m
nkc  using relation (3) 

o Determine ( )mz : choose ( )m
nz k= corresponding to the largest value ( )m

nkc
o Determine ( )mθ that maximizes ( ) ( )( , )m ml θz

o Compute the new value of ( )m
kp : ( )( )

1

1 ( )
N

m m
nk

n
p z k

N =
= =

For the problem of statistical process clustering with covariate influence, the idea of spatial proximity is 
added. To that end, we suggest using a local a posteriori probability. Instead of considering a given path, 
we consider this path and its neighbors (all paths with covariate which are close to the covariate of the 
given path). The neighborhood of a path n is defined by ( ) V nα : the set of path numbers contained in the 
neighborhood of n according to nY whose influence can be tuned thanks to a parameter α  . 
Then the algorithm for clustering with covariate influence is the same as above, except that ( )m

nkc given by 
relation (3) is replaced by

( )m
nkc which provides a local a posteriori probability. 

( )m
nkc is defined by: 

( )( ) ( 1)

| |( 1) ( 1)
( ) 1

| |( 1) ( 1)
1 ( ) 1

( | , , )

( | )

( | )

n

n

m m
nk n

Xm n m
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K Xm n m
r r ir n V n i

p z k X V n
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α

α

α θ
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−
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=

==

∏ ∏
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(4)

3.2 Tuning the covariate influence 
The influence of the covariate is tuned thanks to a parameter α which controls the number of paths 
contained in the neighborhood of each path for the local a posteriori probability computation. The 
neighborhood of a path n is a local region around its covariate nY ,  defined by ( ) V nα :

( ) { }| ( )   1    1n nV n n Y Y R n N n Nα α= − ≤ ∀ = … ∀ = … (5)

where ( )R α  is a bound on the radius which depends on α .
Two approaches have been considered for tuning the covariate influence. The first one consists in 
choosing a fixed value for the radius then ( )R α α= . The second one consists in choosing the number of 
increments values falling in the local region. Then ( )R α  is chosen such that at least a given number α of
increments values belong to ( )V nα , with the constraint that all the increments values of a same path 
belong to ( )V nα .
It is expected than when the influence of the covariates increases, the homogeneity of the class labels in 
the covariate space increases and the likelihood decreases. 
For a given clustering result described by z , a spatial homogeneity measure ( )G z can be defined by 

2

,1 1

1 1

if  

0 otherwise

( )     with   
i j

N N i j
z z ij i ji j

ijN N
iji j

Y Y
exp Y Y

G z
δ κ ρ

ρκ
κ

= =

= =

−
− − <

= =   (6) 
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where , 1
i jz zδ = if i jz z= and 0 otherwise. ijκ is a measure of proximity of iY and jY . Then the value ofG is

between 0 and 1, and increases with the number of pairs sharing the same class label, and close, in a disk 
of radius ρ chosen arbitrarily equal to 2. 
For the log likelihood, it is suggested to use a normalised log-likelihood introduced in (Wang et al., 2012). 
The maximum log-likelihood value is obtained when the clustering is done without covariate influence, and 
noted Kl . The minimum value is obtained when the covariate influence tends to infinity, which 
corresponds to assigning all paths to a single class. Thus we note it 1l . Consequently the normalised log-
likelihood '( )l z for a given clustering result described by z , is defined by 

1

1

( )'( )
K

l z ll z
l l

−=
−

 

4. Application 

The performance of the proposed approach has been evaluated by using simulated data, supposed to 
belong to 2K = Gamma processes. For the experiment we have chosen 11( , ) (18,1.5)a b = or

11( , ) (24.5,1.75)a b = and 22( , ) (12.5,1.25)a b = . The data for the covariate have been chosen in 
dimension 2, with an uniform distribution in 2[0,10] . The chosen boundary between the two classes is 
given by: 3

1 2( / 4) 8.25y y= − + , where 1y and 2y are the covariates. The number of realizations is equal to 
100 and each realization contains 4 observations. An example of different paths and covariates for both 
classes is given on figure 1. 

        

Figure 1: An example of different paths (left) and covariates (right) 

(a)    (b)

(c)   (d)

Figure 2: An example of classification results (+: class 1, o: class 2, line: theoretical boundary) without 
covariate influence (a) and with different values of radius α  : 0.5(b), 1.5(c) and  2.5 (d)  
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         (a)                                                                                 (b) 

       

       

        
                                           (c)                                                                                       (d) 

Figure 3: Error rate, homogeneity and normalized likelihood, in relation with the parameter α in four 
different cases : (a) 11( , ) (18,1.5)a b = , parameter: radius, 1 simulation (b) 11( , ) (18,1.5)a b = , parameter: 
radius, mean of 200 simulations (c) 11( , ) (18,1.5)a b = , parameter: nearest neighbors, mean of 200 
simulations (d) 11( , ) (24.5,1.75)a b = , parameter: radius, mean of 200 simulations. 

The figure 2 shows an example of different classification results obtained without covariate influence
( 0)α = and with covariate influence tuned according to the value of the radius α . It shows that whenα is
too small, some isolate data are misclassified. Increasingα allows to obtain a classification result more 
homogeneous. However, when it is too large, some errors arise near the boundary. Whenα grows, the 
classification result tends to the classification of all observations into a unique class. 
The figure 3a gives the value of three criteria: the error rate, the homogeneity and the normalized log-
likelihood, in relation with the value of the radius α  in the case of 11( , ) (18,1.5)a b =  for an example. The 
figure 3b gives the mean values of these three criteria estimated with 200 simulations. The minimum error 
rate is 7.1% and is obtained for 1.75α = whereas it is equal to 20% without influence of covariates. The 
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figure 3c gives the mean values of these three criteria estimated with 200 simulations, in relation with the 
number of neighbors. The minimum error rate is 7.1% and is obtained for 32α = . It is the same value than 
using the radius as the parameter for selecting the neighbors.  
The figure 3d gives the mean values of the three criteria, in relation with the radius, in the case of

11( , ) (24.5,1.75)a b =   which means that the two processes are more different that in the case of the figure 
3b. The minimum error rate is 2.9% and is obtained for 0.75α = whereas it is equal to 4.4% without 
influence of covariates. 
In the case of real data, the error rate is not known then the value of α has to be selected according to an 
efficient criterion. The curves on figure 3 show that the homogeneity and the normalized log-likelihood 
provide good criteria for that. In particular, a change in the slope of the curves of the homogeneity and of 
the normalized log-likelihood appears around the optimal value of the parameter α . A threshold on the 
homogeneity value could also be used. However to find the optimal value, the criterion has to take into 
account that the curves are not smooth.  

5. Conclusion 
In this paper the problem of clustering stochastic deterioration processes in a Gamma process model-
based framework has been tackled. The data set is composed of realizations describing the process 
evolution in time and covariates which describe the systems from which the realizations originate. Thus 
this is a problem of spatial clustering with side information. 
The proposed procedure is an iterative algorithm including a step of estimation of a posteriori probabilities 
and a step of determination of Gamma process parameters. The influence of the covariates is achieved by 
a local a posteriori probability and the importance of the covariates proximity is tuned thanks to a 
parameter. Empirical results lead to believe that this algorithm converges. A formal study of the 
convergence has to be developed in the future. 
Two parameters for controlling the influence of covariates have been considered: the size of the local 
neighborhood, and the number of neighbors. Simulation results have shown that they lead to equivalent 
results.
Results on simulated data show that the probability of error can be significantly reduced when the 
covariates are taken into account. An homogeneity criterion and a normalized log-likelihood criterion 
provide values that are directly related to the parameter that controls the influence of covariates. Thus they 
can be used for selecting an optimal value of the parameter. This will be addressed in future work. 
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