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This paper is aimed to the study and characterization of the coalescence of two adjacent drops lying on, or 
under (depending on the different densities), the macro-interface of two immiscible liquids. Experiments 
have been performed and coalescence times measured. A mechanistic model of coalescence is proposed. 
The comparison with experimental data is satisfactory. 

1. Introduction 
Some industrial processes, in their operations, involve the presence of two immiscible liquid phases. The 
dispersed drops are surrounded by a continuous phase. The drops tend to coalesce with adjacent drops or 
to join their mother phase separated by an interface. These kind of phenomena occur in many industrial 
operations as well as in environmental processes. The liquid-liquid foams behaviour is connected to them.  
Literature has devoted some attention to the problem of drop coalescence, mainly for the case of 
coalescence of a single drop through planar surface (Charles and Mason, 1960; Hartland, 1967; Davis et 
al., 1971; Zulfaa and Longmire, 2004; Chen et al., 2006; Aryafar and Kavehpour, 2006, Blanchette and 
Bigioni, 2006).  
Some research has been also devoted to the coalescence of adjacent drops (Chen and Pu, 2001; 
Zdravkov et al, 2003). This work reports the results of some experiments performed in a water-in-oil 
system. The coalescing drops (Figure 1) has been captured by using a camera and the coalescence time 
measured. A model has been proposed and compared with the experimental data. The reported approach 
concentrate the attention on the relevant importance of the Van Der Waals/London intermolecular 
attraction forces and describes also the effects of the deformation of the interface area contained between 
the two drops. 
 

 

Figure1: Two adjacent water in oil drops relying at the interface of two liquids 

2. Methods  
The very simple experimental equipment is described in Figure 2, reporting a picture of the system. Two 
phases are present: a water phase and an oil phase. The water is demineralized and the oil is a vegetal 
oil. The properties of both the phases have been measured and are reported in Table 1. 
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The experiments have been performed by gently injecting measured volumes of water at the interface 
between the two phases, forming two drops. Many tests have been realized in order to study the relation 
between coalescence time and drop volume (drop volumes ranged from 0.025 to 0.125 mL). All the tests 
have been recorded with a high speed camera allowing to extract the pictures of coalescence sequence. 
Some of the test have been repeated because the coalescence with the underlying interface was 
anticipated. 

Table 1: Properties of the two phases  

 Density 
(kg/m3) 

Surface Tension 
(kg/s2) 

Viscosity (Pa/s) Refractive index 

Vegetal oil 912.02 0.032 0.12 1.47 
Dem. Water  996.96 0.0726 0.001 1.45 

 
The two drops have been coloured with ink of different colours in order to better observe the coalescence 
phenomenon. 
 

 

Figure 2: Picture of the experimental apparatus 

3. Model description 
First of all it is important to give a description of what has been observed in order to characterize the 
phenomena that are occurring. The two drops, after their formation approach one to the other at the 
interface and rest there until final coalescence occurs. The shape of the oblate spheroidal drops changes 
along the time (that in the present paper is assumed as the coalescence time); the macro-interface is 
deformed for supporting their weight and shows an inflection line around each leaning drop.  Even if the 
two drops seem to be completely at rest, during this stage the very thin film of the continuous phase 
interposed between (and under) them is drained out. The viscous flow of the liquid enclosed into the 
progressively thinning film, produces a dissipative force that hinder the coalescence. It depends on the 
inverse square of the average film thickness. Of course the component of the gravity of the approaching 
drops, depending on to the inflection of the surface supporting the drops, is constant along the time and 
cannot overcome the viscous resistance as soon as the drainage proceeds. Then, only the molecular 
attractive energies that can be estimated by Lennard-Jones potential energy, can constitute the driving 
force for the ultimate deformation of the drops and the final drainage of the interposed film. The drainage 
(= coalescence time) depends on several physical and geometrical properties: worth to say, it is 
proportional to the viscosity of the drained phase. At the end, the interface of contact is disrupted and the 
drops coalesce producing a larger new drop. This final step is extremely fast with respect of the time 
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required for film drainage. The new drop, subsequently, can coalesce with its mother phase (by restoring 
the continuity of the macro-interface between the two bulk phases). 
The coalescence mechanism can be therefore divided in two main steps. In the first one the two drops 
approach, in the second one the interposed film is drained out and coalescence occurs. Also coalescence 
with the beneath mother phase can occur. In this work the coalescence time reported in the experiments 
will refer only to film drainage that starts when the drops, after their approach, rest at the interface till the 
final coalescence into a single drop. 

3.1 Stage of drops approaching  
The macro-interface among water and oil is deformed by the presence of the drops (see figure 3). The 
meniscus presents an enhanced deformation in the area between and around the drops. This results in an 
inclination with respect to of the horizon. This inclination promotes the movement of the drops one towards 
the other. The equatorial plane of the two drops declines of an angle φ that can be evaluated by using the 
expressions reported in Bozzano and Dente (2011) related to drop and underlying surface shape 
calculation. The shape of the macro-interface is approximated thank to a linear expression introduced into 
the Joung-Laplace equation: 
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This linearization allows superposing the effects of the two drops (or more) over the macro-interface.                                             

 

Figure 3: Qualitative sketch of the drops lying over the macro-interface 

In order to enter in touch, the two drops have to drain out the interposed film of the continuous phase. The 
indefinite equation of the mechanical energy governing this phenomenon can be described, with an 
excellent approximation, by the following expression: 
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where:  v = approaching velocity 

           vΦ̂ = dissipation function  

            μc  = viscosity of the continuous phase 
            ρc  = density of the continuous phase 
 
The dissipation function is essentially a function of the velocity and, then, of the volume of the drops. 
The power that is dissipated during this stage varies with the inverse of the third power of the distance 
between the drops, resulting in a drastic decrease of the velocity during the approach. The evaluation of 
the dissipation function, can be estimated  by assuming a parabolic velocity profile inside the film (due its 
extremely reduced thickness); it allows to evaluate the viscous dissipation force that results to depend on 
the viscosity of the continuous phase and on curvature radius of the drops where their distance in the 
minimum one: 
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In expression 3, h0 is the thickness reached by the interposed film to drain out, R0 is the distance between 
the centre of the drop and the inflection point of the interface, RC is the radius of curvature at the inflection 
point. The calculation of this parameters has been already proposed in a previous paper (Bozzano and  
Dente, 2011).   

3.2 Attractive intermolecular forces 
The nature of this forces is related to Van der Waals-London forces and their importance is particularly 
relevant for very short distances. In fact, the attractive potential is described by equation 3, where the 
intensity of the force depends on the inverse of the sixth power of the distance:  
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where V is the particle volume, d is the distance, A is the Hamaker constant. The Hamaker constant for 
drops separated by a media is calculated following Mahanty and Ninham (1976): 
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            2n=ε , n = refractive index 

            π= 2hh  

            λπ=ω c20 absorbance frequency (λ is the wave length, c in the light velocity) 

             h is the Planck constant (= 6.6242 10-34) 
  
For performing the integration of equation 4), the two facing surfaces have been described as two toroids . 
The results of the approximated integration produced the attractive force between the two drops: 
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3.3 Forces Balance 
It is now possible to write a forces balance, from which the drainage time is calculated, taking into account 
all the contributions to the film drainage (component of the net-weight, viscous resistance and attractive 
force): 
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(Rs is the equivalent spherical radius of the drop, Δρ the density difference, g the gravitational force per 
unit mass). Integrating equation 8): 
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Making reference to the previous paper by Bozzano and Dente (2011), it is possible to re-write equation 6) 
as: 
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where:  
Eoza
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31
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61
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==   , z=b/a, a is the major axis the oblate spheroid representing the drop 

undisturbed shape (see figure 4),  Eo is the Eötvos number (Eo = σρΔ 2
sgD ), σ the interfacial tension.  

 
By approximating the radius of curvature as follows : 

a4

1

a2

11

2

1

R

1

c

≅






 +
∞

≅           10)  

The following expression results for the evaluation of coalescence time: 
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Figure 4: Assumed single drop shape 

Some considerations can rise from the analysis of the obtained expression: the coalescence time is 
proportional to the continuous phase viscosity, it depends also on the equivalent spherical radius with a 
power greater than one, so that the time increases with the drop dimension. The coalescence time 
decreases with the interfacial tension. This results are in agreement with the ones obtained also by other 
researchers (see for instance Chen and Pu, 2001) and with the experimental observation.  
The analysis of the different contribution of equation 6) also explains  what obtained. The force required for 
the film drainage has to overcome the viscous resistance. The increase of drop size from a side increases 
the gravity force, but, from the other side, increases drop deformation with a consequent major surface 
contact. This produce a decrease of the inflection of the surface interposed between the two drops. The 
obtained result is related to a “balanced approach” where the two drops have the same volume (indicated 
by the index bal). When the two drops have a different volume (index unbal), expression 12) can be 
modified in (Rs is estimated as the geometric average of the equivalent spherical radius of the two drops): 
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4. Results and Comparisons 
In order to better observe the coalescence process the water drops have been differently coloured (red 
and black). The pictures reported in the following figure are extracted from the movie and start from a time 
zero equivalent to the end of the initial approaching time. Table 2 reports the times (in seconds) 
corresponding to the different sequences. From the pictures it is possible to observe that, during final 
coalescence no mixing is occurring between the drops and a relaxation of the new drop is present 
generating also waves over the surface. 

 

Figure 5: Some photograms of the coalescence process (from 1 to 6) 
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The final coalescence process is extremely fast. 

Table 2: times related to sequences of Figure 5  

 [s] 1 2 3 4 5 6 

Time 00.00 00.04 00.08 00.12 00.16 00.20 

 
Figure 6 shows the comparison between calculated coalescence times and some experimental data. The 
agreement is satisfactory taking also into account the simplifications that have been adopted. 

 

Figure 6: Comparison of experimental data with coalescence model 

5. Conclusions 
 In this paper an original model for this kind of transversal coalescence mechanism is proposed. The 
model is compared with some experimental data obtained by the authors. The comparisons are quite 
satisfactory. The study of single drop coalescence can constitute the basis for the analysis of more 
complex (multi-drops) systems like liquid-liquid foams, that can be of great importance into many types of 
equipment. 
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