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This paper proposes a fast robust model predictive control using polyhedral invariant sets for uncertain 
polytopic discrete-time systems. A sequence of nested polyhedral invariant sets corresponding to a 
sequence of state feedback gains is constructed off-line. Thus, most of the computational burdens are 
moved off-line. At each sampling time, when the measured state lies between two adjacent polyhedral 
invariant sets, a state feedback gain is calculated by solving a linear programming based on linear 
interpolation between two pre-computed state feedback gains. The controller design is illustrated with an 
example. The simulation results showed that the proposed algorithm provides a better control performance 
while on-line computation is still tractable as compared to previously reported algorithms.  

1. Introduction 
Model predictive control (MPC) is a control technique that optimizes future behaviour of a process by using 
a process model. Robust model predictive control (RMPC) is a specific type of MPC which explicitly 
includes model uncertainty in the problem formulation. RMPC has been applied in a wide variety of 
application areas such as control of a tabular heat exchanger (Bakošová and Oravec, 2012) and distillation 
column (Martin et al., 2013). In RMPC, all possible state trajectories are restricted to lie in the invariant set 
constructed, so robust stability of the system can be guaranteed. Although the polyhedral invariant set is 
well-known to have some advantages over the ellipsoidal invariant sets such as better handling of 
asymmetric constraints and enlargement of stabilizable region (Pluymers et al., 2005), the ellipsoidal 
invariant set is usually used in RMPC formulation due to its relatively low on-line computational complexity. 
Recently, an off-line RMPC algorithm using polyhedral invariant sets has been developed by Bumroongsri 
and Kheawhom (2012b). The on-line computational complexity is reduced by constructing off-line a 
sequence of polyhedral invariant sets corresponding to a sequence of pre-computed state feedback gains. 
At each sampling instant, the smallest polyhedral invariant set containing the measured state is 
determined and the corresponding state feedback gain is implemented to the process. Thus, all of the 
computational burdens are moved off-line. However, the conservativeness is obtained because the control 
law implemented at each time step is only an approximation of the true optimal control law. Moreover, the 
input discontinuities caused by a switching between state feedback control laws are occurred. Therefore, 
the algorithm requires constructing a large number of polyhedral invariant sets, hence large data storage, 
in order to improve the control performance and reduce the input discontinuities.  
In this paper, we present a fast RMPC using polyhedral invariant sets that requires very small computation 
complexity and data storage. A sequence of nested polyhedral invariant sets corresponding to a sequence 
of state feedback gains is constructed off-line. At each sampling instant, when the measured state lies 
between two adjacent polyhedral invariant sets, the real-time control law is calculated by solving a 
computationally low-demanding linear programming that is based on linear interpolation between two pre-
computed state feedback gains.  
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Notation: For a matrix A , TA denotes its transpose, 1−A  denotes its inverse. I  denotes the identity 
matrix. For a vector x , )/( kkx  denotes the state measured at real time k , )/( kikx +  denotes the 

state at prediction time ik +  predicted at real time k . The symbol ∗  denotes the corresponding transpose 
of the lower block part of symmetric matrices.  

2. Problem formulation 
The model considered here is the following linear time varying (LTV) system with polytopic uncertainty 
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where )(kx  is the state of the plant, )(ku  is the control input and )(ky  is the plant output. We assume 
that 
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is the uncertain parameter vector. The aim of this research is to 

find the state feedback control law 
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that stabilizes (1) and achieves the following performance cost under the nominal model assumption 
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 where 0>Θ and 0>R are symmetric weighting matrices, subject to input and output constraints 

max,)/( hh ukiku ≤+ , 1,2,3,..., uh n=            (6) 

max,)/( rr ykiky ≤+ , 1,2,3,..., yr n=            (7) 

3. The proposed algorithm 
In this section, a fast RMPC using polyhedral invariant sets is presented. A sequence of polyhedral 
invariant sets corresponding to a sequence of state feedback gains is constructed off-line. At each 
sampling instant, when the measured state lies between two adjacent polyhedral invariant sets, the real-
time state feedback gain is calculated by linear interpolation between two pre-computed state feedback 
gains. The idea of the proposed algorithm is based on linear interpolation between two pre-computed state 
feedback gains to get the real-time state feedback gain that is as large as possible. 
  
Algorithm 3.1 
Off-line step 1: Choose a sequence of states { },....,N,ixi 21 , ∈  and solve the following problem to obtain 

the corresponding state feedback gains 1
i i iK YG−=   

1418



 

 

,, ,
min

i i j i
iY G Q
γ                                                                                                                     (8) 

,

1
s.t. 0 1 2,...,

i j i
  , j , L

x Q
∗ 

≥ ∀ = 
 

                                                                   (9) 

,

,
1
2

1
2

0 1 2,..., 1 2,...,
0

0 0

T
i i j i
^ ^

i i l i

i i

i i

G G Q

AG BY Q
, j , L, l , L

Θ G γ I

R Y γ I

 + − ∗ ∗ ∗
 
 + ∗ ∗
  ≥ ∀ = ∀ = ∗ 
 
  

               (10) 

, 0 1 2,..., 1 2,...,
T

i i j i

j i j i l

G G Q
 , j , L, l , L 

A G B Y Q
 + − ∗

≥ ∀ = ∀ = +  
                                     (11) 

2
max

,
0 1 2,...,   1 2 ...,T T hh h, u

i i i j i

X
, j , L, X u , h , , n

Y G G Q
∗ 

≥ ∀ = ≤ = + − 
                     (12) 

Note that the following condition must be satisfied 

1 1
, 1 , 1( ) ( ) 0,  1,2,..., , 1,2,.., , 1,2,...,T

j i k k i j i k k iQ A B K Q A B K j L i N k L− −
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The optimization problem used to derive the state feedback gains in this step is based on the online RMPC 
controller proposed by Bumroongsri and Kheawhom (2012a). It is the minimization of upper bound of 
infinite horizon nominal cost performance. However, the output constraints are relaxed in this step in order 
to enlarge the stabilizable region and to reduce conservativeness. The output constraints and also input 
constraints are then properly taken into account during polyhedral invariant set construction in off-line-step 
2. The condition (14) is used to assure robust stability satisfaction of a convex combination of iK  and 1iK + . 

Off-line Step 2: Construct a sequence of polyhedral invariant sets { } NidxMxS iii ,...,2,1 ,/ =≤=  

corresponding to a sequence of pre-computed state feedback gains NiKi ,...,2,1 , =  by following the 
procedures of Bumroongsri and Kheawhom (2012b). 
On-line Step 1: At each sampling instant, if the measured state lies between iS

 
and 

1+iS 1,...,2,1, −= Ni , implement 1)1( +−+= ii KKK λλ  to the process where λ  is calculated by solving 
the following optimization problem 

min
λ

λ    (14) 

s.t. 

min 1 max( (1 ) )i i ku K K x uλ λ +≤ + − ≤     (15) 

LjdxKKBAM ikiijji ,...,2,1,)))1((( 1 =∀≤−++ +λλ     (16) 

10 ≤≤ λ            (17) 

If the state lies in NS , implement NK
 
to the process. 

Since input and output constraints impose lesser and lesser limits on state feedback gains as the state 
converges to the origin, the norm of pre-computed state feedback gain increase from outer to inner 
polyhedral invariant sets )1,...,2,1,( 1 −=< + NiKK ii . By minimizing λ  at each control iteration, the real-
time state feedback gain that is as large as possible is implemented to the process.  
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4. An example 
Consider the application of our approach to the nonlinear two-tank system which is described by the 
following equation 

ughAhS +−= 111

.

1 2ρρ         (18) 

22112

.

2 22 ghAghAhS ρρρ −=         (19) 

where 1h  is the water level in tank 1, 2h  is the water level in tank 2 and u  is the water flow. The operating 
parameters are shown in table 1. 

Table 1:  The operating parameters of nonlinear two-tank system. 

Operating parameters Values 

1S  2cm 500,2  

2S  2cm 600,1  

1A  2cm 9  

2A  2cm 4  
g  2cm/s 980  
ρ  3kg/cm 001.0  

 

Let ,,111 eqhhh −=  eqhhh ,222 −=  and equuu −=  where subscript eq  is used to denote the corresponding 

variable at equilibrium condition, the objective is to regulate 2h  to the origin by manipulating u . The input 

and output constraints are kg/s 5.1≤u , cm  131 ≤h , cm 502 ≤h . 

By evaluating the Jacobian matrix of (17) and (18) along the vertices of the constraints set, we have that 
all the solutions are also the solution of the following differential inclusion 
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where 4,...,1, =jAj  are given by 
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The discrete-time model is obtained by discretization of (18) and (19) using Euler first-order approximation 
with a sampling period of 0.1 s and it is omitted here for brevity. The tuning parameters are 
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Θ and 0.01R = . The proposed algorithm is compared with its online counterpart RMPC algorithm 

proposed by Bumroongsri and Kheawhom (2012a) and the off-line RMPC algorithm proposed by 
Bumroongsri and Kheawhom (2012b). 

Figure 1 shows a sequence of four polyhedral invariant sets { } 4,...,2,1 ,/ =≤= idxMxS iii  constructed off-
line. The sizes of polyhedral invariant sets decrease from 1S  to 4S  while the norm of state feedback gains 
increase from 1S to 4S . 

 

Figure 1: A sequence of four polyhedral invariant sets constructed off-line. 

Figure 2 shows profiles of the water level in tank 2 (regulated output) and the water flow (control input) 
obtained by each algorithm. Algorithm 3.1 can steer the state to the origin faster that other algorithms. This 
is due to the fact that in the algorithm of Bumroongsri and Kheawhom (2012b), there is no interpolation 
between pre-computed state feedback gains. Consequently, the control law implemented at each time 
step is only an approximation of the true optimal control law. 
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Figure 2: a) The water level in tank 2 (regulated output) and b) the water flow (control input). 

The algorithm of Bumroongsri and Kheawhom (2012a) uses online optimization to compute a state 
feedback gain. However, the algorithm utilizes an ellipsoidal invariant set that is more conservative than a 
polyhedral invariant set. It is seen that by interpolation between pre-computed state feedback gains as 
proposed in algorithm 3.1, the control input variable becomes continuous, and the smooth response is 
obtained. 
For each control iteration, the average on-line computational time required for algorithm 3.1 is as low as 
0.001s, because all of the on-line optimization problems are formulated in the form of linear programming. 
The algorithm of Bumroongsri and Kheawhom (2012a) uses online optimization to compute a state 
feedback gain, and computational time of 0.3s is required for each sampling time. 
5. Conclusions 
In this paper, we have presented a fast RMPC using polyhedral invariant sets. A sequence of polyhedral 
invariant sets corresponding to a sequence of pre-computed state feedback gains is constructed off-line. 
At each sampling instant, the smallest invariant set containing the currently state measured is determined. 
A state feedback gain is calculated by solving a linear programming based on linear interpolation between 
two pre-computed state feedback gains associated with current invariant set determined and the adjacent 
smaller invariant set. The simulation results show that the proposed algorithms can achieve better control 
performance than existing algorithms including the off-line RMPC algorithm based on polyhedral invariant 
sets without interpolation, and its online counterpart RMPC algorithm based on ellipsoidal invariant sets. 
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