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In this work we present solution strategies for the task of designing supply chains with the explicit 
consideration of the detailed plant performance of the embedded facilities. Taking as a basis an mixed 
integer linear programming (MILP) model introduced in a previous work, we propose three solution 
strategies that exploit the underlying mathematical structure. The strategies are based on bi-level 
decomposition algorithm and Lagrangean decomposition method. Also, we propose a hybrid approach that 
takes advantage of both well known strategies, improving the solution obtained by Lagrangean methods. 
Numerical results show that the bi-level approach works more efficiently than Lagrangean and hybrid 
decomposition, and lead to significant CPU savings when compared to the full space MILP for large scale 
problems. 

1. Introduction 
Decisions made in supply chain management (SCM) have been traditionally divided in three basic levels 
according to their temporal and spatial scale: strategic, tactical and operational. Several authors have 
recognized the importance of integrating decision levels in SCM as an effective manner to increase the 
overall profit, but very few contributions have been made in this field. 
In the last years, however, there have been some attempts to combine decisions in supply chain (SC) 
optimization. In particular, Corsano and Montagna (2011) presented a mixed integer linear programming 
(MILP) model for the simultaneous optimization of SC and plant design. In that work, decisions regarding 
the SC network optimization, such as nodes selection and materials distribution, are together considered 
with multiproduct batch plant design decisions in order to attain a more integrated perspective of the SC 
design problem. However, the integration of decision making levels in SCM further increases the 
complexity of the modelling approach, as additional variables and constraints need to be defined to 
represent decisions of different nature within a single model. Hence, one of the main challenges of 
integrating decisions in SCM is the efficient solution of large-scale problems. It is therefore not surprising 
that the majority of published works dealing with decision levels integration in SC optimization have 
resorted to decomposition methodologies for obtaining optimal or near optimal solutions in short CPU 
times.  
Van den Heever et al. (2001) proposed a specialized heuristic algorithm based on the concept of 
Lagrangean decomposition for the long-term design and planning of offshore hydrocarbon field 
infrastructures with complex economic objectives. Jackson and Grossmann (2003) presented two different 
decomposition schemes to solve a multisite production planning and distribution model that were based on 
Lagrangean decomposition. You and Grossmann (2008) proposed a decomposition algorithm based on 
Lagrangean relaxation for solving the integrated stochastic inventory management and supply chain 
network design.  
Bi-level decomposition was also applied to large-scale optimization problems related to integrated SC 
decisions. Iyer and Grossmann (1998) solved a MILP model for determining the optimal selection and 
expansion of processes over a long-range planning horizon using a rigorous bi-level decomposition 
algorithm. Guillén-Gosálbez et al. (2010) addressed the design of hydrogen supply chains for vehicle and 
proposed a bi-level algorithm to expedite the search for the optimal Pareto solutions. 
Despite these algorithmic developments, the use of decomposition strategies in the integrated design of 
SCs along with their embedded facilities has been quite scarce. Because of this, current full space 
approaches can only tackle problems that consider only a limited number of plants, depots and clients.  
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In this work we fill this research gap by presenting several customized decomposition algorithms for this 
problem. The MILP model for the design of SCs presented in Corsano and Montagna (2011) that includes 
equations to model the performance of the batch plants of the network is taken as a basis to develop our 
algorithmic framework. Such a spatial integration of decision-making levels leads to a complex formulation 
that is hard to solve in reasonable computational time. This MILP becomes even more complex as the 
number of plants increases, mainly because of the presence of complicating constraints that are required 
to model the plant performance precisely. Hence, the main contribution of this work is the development of 
three tailored algorithms inspired on bi-level and Lagrangean decomposition schemes that exploit the 
problem structure, making it possible to tackle large-scale problems encountered in practice. Numerical 
results show that our approaches outperform standard branch and cut codes applied to the full space 
MILP. 

2. Problem statement 
In this work, we consider a generic SC like the one shown in Figure 1. 
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Figure 1: Integrated SC and multiproduct batch plant design 
 
Based on this representation, we formally state next the problem of interest. Given is a set of raw materials 
sites Ss ∈ . Each raw material site s, has one or more types of raw materials r, Rr ∈ , with limited capacity 

UP
srQ , to be delivered to plants Ll ∈ , which operate during time horizon Hl. Each multiproduct plant has a 

set of batch stages lJj ∈ , for producing a set of products Ii∈ .  
For each multiproduct batch plant, we consider in phase and out of phase unit duplication. The allocation 
of intermediate storage tanks between two batch stages is also considered. These can be allocated in 

1−lJ  positions in plant l, where position j is defined between batch stages j and j + 1. A zero-wait (ZW) 

transfer policy is adopted between consecutive batch stages.  
According to the usual unit procurement policy, a set SVjl of Pjl discrete unit sizes, 

{ }
jljlPjljljl VF,...,VF,VF SV 21=  is available for stage j in plant l. Similarly, a set of Gjl discrete sizes for storage 

tanks { }
jljlGjljljl VTF,...,VTF,VTF STF 21=  is available for position j in plant l.  

Final products are delivered from plant l to several warehouses Mm ∈ , each of them with a limited 
capacity UP

mQ . Products are then transported from warehouse m to different customer zones Kk ∈ , in 
order to satisfy a known product demand Dik. Assuming that cost parameters associated to plants and 
warehouses installation, investment, production, distribution, raw materials and operation are known, the 
problem consists of determining simultaneously: 
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• The SC topology (nodes allocation). 
• The SC planning (production rates and flows among nodes). 
• The multiproduct batch plan design (plant configuration and unit sizes). 
in order to fulfill the product demands with minimum cost. The cost function considers installation, 
investment, production, operation, and transportation costs. 

3. Mathematical model 
In this work the decomposition strategies are developed taking as a basis the MILP formulation addressed 
by Corsano and Montagna (2011), which is not presented here for space reasons. This model represents 
the full space problem and it will be referred as (FP) in the rest of the paper. 

4. Solution strategies 
4.1. Bi-level decomposition 
Bi-level algorithms decompose the original full space model into two subproblems at different hierarchical 
levels between which they iterate until a termination criterion is satisfied. Our proposed bi-level algorithm 
solves a lower bounding master problem (LBP), which is a relaxation of the full space problem (FP), to 
obtain a lower bound on the cost. This relaxation is constructed by dropping the integrality requirement of 
the binary variables that model the selection of products to be produced in each plant and the selection of 
unit and storage tank sizes. Because of these modifications, problem (LBP) is less complex in 
combinatorial terms than the original model (FP). The master problem provides as output a SC 
configuration that is optimal in the relaxed search space, but not necessarily in the full space model. 
Hence, the configuration obtained from (LBP), i.e. allocated plants and warehouses, is fixed in the upper 
bounding problem (UBP), to obtain an upper bound on the total cost of the network and determine at the 
same time the values of those variables that were relaxed in (LBP). As only a subset of plants and 
warehouses is selected for solving (UBP), this model contains fewer integer variables and is not as 
combinatorially complex as problem (FP).  
Problems (LBP) and (UBP) are then solved iteratively until a termination criterion is reached. In every 
iteration a new integer cut is added to (LBP) in order to exclude from the search space SC configurations 
already explored in previous iterations. As iterations proceed, the difference between the best lower and 
upper bounds (i.e., optimality gap) decreases. Two termination criteria that tend to work well in practice are 
to stop either when the difference between the lower and upper bounds falls below a desired tolerance or 
when a maximum number of iterations is reached. 
4.2. Lagrangean decomposition 
This method relies on constructing a relaxation of (FP) (i.e., Lagrangean dual problem), obtained by 
dualizing (dropping) some “complicating” constraints of the model. There are different ways to construct 
the relaxed problem according to the type of constraints that are dropped. In the context of SCM, the two 
main approaches are spatial and temporal decomposition. In this work, spatial decomposition is applied. 
Specifically, the mass balances between production plants and warehouses are dualized and the relaxed 
problem is then decomposed into two subproblems: (P1) for plants and (P2) for warehouses.  
After solving the Lagrangean dual for some values of the Lagrangean multipliers, we obtain a lower bound 
on the total cost. We then need to generate an upper bound and a feasible solution to the original problem. 
To this end, we fix some variables of the original model according to the output of the dual model and then 
solve it in a reduced domain so as to yield a valid upper bound. 
After obtaining an upper bound, we can generate new values for the Lagrangean multipliers and repeat the 
overall procedure until a termination criterion is satisfied. 
4.3. Hybrid strategy 
A third strategy is proposed that combines the basic ideas of both Lagrangean and bi-level decomposition 
algorithms. The number of binary variables of (P1) solved at each iteration of the Lagrangean 
decomposition is similar to the number of binary variables of (FP), and so is the computational burden. To 
expedite the solution of (P1), we propose the following modifications: 
• Subproblem (P1) is solved relaxing some of its binary variables, namely those that model the size of 
the units and tanks. This leads to lower computational burdens. 
• The following integer cuts are added to (P1) in each iteration of the algorithm in order to avoid repeated 
solutions: 
 11

01

−≤− 
∈∈

iter

WLl
l

WLl
l WLexex

iteriter

 (1) 

where exl represents the binary variable for plant selection and: 
{ }iterexlWL l

iter  iteration at (P1 ) of solution optimal the in  : 11 ==

{ }iterexlWL l
iter  iteration at (P1 ) of solution optimal the in  : 00 == . 
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Since the number of binary variables is reduced in subproblem (P1), the computational burden is lowered. 
The production plants selected by (P1) are then fixed in the reduced model (FP). In order to avoid 
solutions explored in previous iterations, we add integer cuts to (P1), so it is guaranteed that the set of 
installed plants to be fixed in the reduced (FP) will be different at each iteration.  

Table 1: Model characteristics of different approaches in each example 

  (FP) Bi-level Lagrangean Hybrid 
   (LBP) (UBP) (P1) (P2) Reduced 

FP 
(P1) (P2) Reduced 

FP 

Example 1 
bin. var. 223 68 115 220 3 218 65 3 218 

cont. var. 2,082 2,082 2,081 2,039 104 2,142 2,039 104 2,142 
constr. 2,144 2,484 2,144 2,114 35 2,204 2,114 35 2,204 

Example 2 
bin. var. 450 140 430 440 10 440 130 10 440 
cont. var. 4,488 4,488 4,488 4,354 535 4,888 4,354 535 4,888 
constr. 4,286 4,287 4,286 4,214 77 4,686 4,214 77 4,686 

Example 3 
bin. var. 470 140 450 460 10 460 130 10 460 
cont. var. 6,608 6,608 6,608 5,994 1,215 7,208 5,994 1,215 7,208 
constr. 6,054 6,054 6,054 5,916 145 6,654 5,916 145 6,654 

Example 4 
bin. var. 700 205 675 690 10 685 195 10 685 
cont. var. 9,603 9,603 9,603 8,989 1,515 10,503 8,989 1,515 10,503 
constr. 9,004 9,005 9,004 8,866 145 9,904 8,866 145 9,904 

Example 5 
bin. var. 450 140 430 440 10 440 130 10 440 
cont. var. 4,768 4,768 4,768 4,354 815 5,168 4,354 815 5,168 

const. 4,314 4,315 4,314 4,214 105 4,714 4,214 105 4,714 

5. Numerical results 
We solved five numerical examples to evaluate the performance of the proposed decomposition 
algorithms. Table 1 presents the model characteristics while Table 2 shows the computational 
performances for the different approaches in each example. All the examples were implemented and 
solved in GAMS (Rosenthal, 2008) on an Intel Core i5, 2.3 GHz. The CPLEX 12.1.0 solver was employed 
for solving the MILP problems. The number of continuous and binary variables and constraints strongly 
depends on the number of plants to be installed, the number of products to be produced, and the number 
of discrete options considered for the batch units and storage tanks sizes. Note that the computational 
complexity of the problem, and consequently the computational burden, grows with the number of binary 
variables. Moreover, due to some trade-offs involved in the decision-making problem, the model 
performance varies according to the problem data, as shown in Example 5. In all of the examples, the 
tolerance error (difference between bounds) for the bi-level, Lagrangean and hybrid algorithms was set to 
1 %. An optimality gap of 1% was also defined for CPLEX when solving (FP). The maximum number of 
iterations for decomposition algorithms was set to 20 and the resolution time limit equal to 14,400 CPU s 
(4 h). 
The first example is taken from Corsano and Montagna (2011). It considers 2 raw material sites that 
provide 3 different raw materials to 5 potential production plants. These plants produce 4 products through 
3 batch stages. For each batch stage, we consider a set of 5 discrete sizes, and the option of duplication 
of up to 2 units in phase or out of phase is allowed. Also, 3 different tank sizes are available. There are 3 
types of warehouses and 3 customer zones. 
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The second example increases to 10 the number of production plants and 10 warehouses. The number of 
customer zones and associated demand remain the same as the previous case. The aim here is to test 
the model performance for a large-size problem. 
The third and the fourth examples are also large-size problems and they are presented in order to evaluate 
the strategies performance. Instance 3 considers the possibility of producing 6 products in each plant and 
ten customer zones, while instance 4 increases the number of production plants to 15. 
Finally, to construct the fifth example we have modified some model parameters values from the second 
example in order to show how the problem data affect the computational burden due to the existence of 
inherent tradeoffs. 
It is worth to mention that in some cases the lower bound exceeds the upper bound (bi-level 
decomposition algorithm in Example 3, 4 and 5 hybrid strategy in Example 1). This is due to the use of 
integer cuts. That means that the best solution identified so far is in turn the global optimum, since it is 
impossible to obtain any other solution with a better objective function value. 

6. Concluding remarks 
Taking as a basis an MILP that calculates decisions pertaining to different hierarchical levels in SCM (i.e., 
single site and multi-site design tasks), we have developed three decomposition algorithms that exploit the 
problem structure. Several case studies have been solved to test the capabilities of these numerical 
methods. From these examples, it has been shown that the bi-level decomposition scheme performs 
better in terms of quality of the final solution produced and time spent in its generation. This finding is 
consistent with other results published in the recent literature (You et al., 2011).  
Lagrangean decomposition is not so good in this type of problem where after applying the spatial 
decomposition, the subproblems still have many binary variables and several tradeoffs among decisions 
(product selection, plant configuration, unit sizing, etc.). On the other hand, the hybrid method reduces the 
number of binary variables in the subproblems, but the lower bounds might be less than the lower bounds 
provided by Lagrangean method, and consequently the length of the optimality gap is worsened. Future 
work will extend our approach to tackle other similar problems that integrate several decision-making 
levels. 
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