
 CCHHEEMMIICCAALL EENNGGIINNEEEERRIINNGG TTRRAANNSSAACCTTIIOONNSS

VOL. 32, 2013

A publication of

The Italian Association
of Chemical Engineering

Online at: www.aidic.it/cet
Chief Editors: Sauro Pierucci, Jiří J. Klemeš
Copyright © 2013, AIDIC Servizi S.r.l.,
ISBN 978-88-95608-23-5; ISSN 1974-9791

Tightening a Discrete Formulation of the Quadratic
Assignment Problem

Axel Nyberg*, Tapio Westerlund
Center of Excellence in Optimization and Systems Engineering, Åbo Akademi University, Biskopsgatan 8, FI-20500
Åbo, Finland
axel.nyberg@abo.fi

The quadratic assignment problem is a well studied and notoriously difficult combinatorial problem.
Recently, a discrete linear formulation of the quadratic assignment problem was presented that solved five
previously unsolved instances from the quadratic assignment library, QAPLIB, to optimality. That
formulation worked especially well on sparse instances. In this paper we show how to tighten that
formulation by adding cuts to the auxiliary variables. The cuts are derived from solving linear programming
problems before solving the main problem. The linear programming problems are easily solved even for
larger instances and therefore many cuts can be added without any considerable change of computing
time. With only a few cuts we can improve the root node bound considerably.

1. Introduction
The quadratic assignment problem (QAP) was originally presented by Koopmans and Beckmann (1957).
QAPs arise in various fields including facility location, scheduling, manufacturing, statistical data analysis
and economics to name a few. A tremendous amount of work has been done both on lower bounding and
on finding solutions, but still, some instances of size ݊ = 30 of the QAP are considered extremely difficult
to solve to proven optimality (Loiola et al., 2007). Recently Nyberg and Westerlund (2012) solved four of
the esc instances, of size	݊ = 32 and	݊ = 64, from the quadratic assignment problem library, QAPLIB, that
had remained unsolved since 1990. Fischetti et al. (2012) solved two instances including the largest QAP
solved so far (݊ = 128) and Nyberg et al. (2013b) solved the last unsolved instance from the esc family.
The esc instances are about minimizing hardware when testing circuits and are all sparse and contain a lot
of symmetries (Eschermann and Wunderlich, 1990). The instance tai30b (Taillard, 1995) is the latest QAP
to be solved. It was solved using a similar code as in Hahn and Saltzmann (2010). The last remaining
unsolved instance of size ݊ = 30 from the QAPLIB is the tai30a (Taillard, 1991). In addition to solving a
few instances, a lot of the recent work has been concentrated on calculating tight lower bounds for the
larger instances (Peng et al., 2010).

Koopmans and Beckmann formulated the QAP in the following manner:
 min∑ ∑ ∑ ∑ ܾܽ ݔݔ (1)

s.t. ∑ ݔ = 1,			݆	 = 	1, 2, . . . , ݊, (2) ∑ ݔ = 1,			݆	 = 	1, 2, . . . , ݔ (3) ,݊ ∈ ሼ0,1ሽ,			݅, ݆ = 1,2,… , ݊, (4)

where ܽ and ܾ are the elements in the given flow and distance matrices A and B respectively.	

1309

The Koopmans-Beckmann formulation has ݊ଶ(݊ − 1)ଶ bilinear terms resulting in poor lower bounds if
linearized directly using for example McCormick envelopes (McCormick, 1976). Instead of linearizing the
above formulation, Nyberg and Westerlund (2012) recently proposed a discrete mixed-integer nonlinear
programming formulation (MINLP) for the QAP with only ݊ଶ discrete bilinear terms.

 min∑ ∑ ܽ′ܾ′ (5)

s.t. ܽᇱ = ∑ ܽᇱݔ		ୀଵ 	∀݅, ݆, (6) ܾᇱ = ∑ ܾᇱݔ			ୀଵ 	∀݅, ݔ (7) ,݆ ∈ ܺ, (8)

where ܺ is the feasible set of the assignment constraints Eq (2), Eq (3) and Eq (4). We will use Eq (8)
throughout this paper since these constraints are present in all our formulations. The above MINLP was
reformulated into a discrete linear form (DLR) by which several previously unsolved instances (with sizes ݊ = 32 and ݊ = 64) from QAPLIB, were solved to proven optimality. The same idea was incorporated
when optimizing a supply-chain design for specialty chemicals with good results (Nyberg et al., 2013a).
This mixed-integer linear programming (MILP) formulation worked especially well on sparse instances and
instances with few unique elements in one of the matrices. An interesting observation with the DLR
formulation is that even though the root node bound is rather low compared to many other methods, the
lower bound will increase very quickly after a few branch and bound iterations. In this paper we show how
the root node bounds can be tightened by adding some simple cuts a priori.

2. Discrete linear reformulation
Below is the MILP formulation from Nyberg et al. (2013b).

 min∑ ∑ ∑ ெୀଵܤ ୀଵୀଵݖ (9)

s.t. Eq(8) and ݖ ≤ ఫഥܣ ∑ ,∈ݔ 	݉ = 1,2, … ,݅∀				ܯ, ݆, (10) ∑ ெୀଵݖ = ∑ ܽ	ݔ,ୀଵ 					∀݅, ݖ (11) ,݆ ≥ ܣ ∑ ∈		,ݔ 	݉ = 1,2, … ,݅∀				ܯ, ݆, (12)

where ݖ ∈ ൣ0, ఫഥܣ ൧										∀݅, ఫഥܣ (13) ,݆ = max୧ a୧୨ ܣ (14) ,݆∀							 = min୧ a୧୨ 								∀݆: ݆ ≠ ܭ (15) ,݅ = ൛݆หܾ = ,݅∀						ൟܤ ݆: ݅ ≠ ݆	 ⋀݉ = 1,… ܾ	 , (16)ܯ, ∈ ൛ܤଵ, ,ଶܤ … , ,݅∀				ெൟܤ ݆. (17)

In the above formulations Eq(7) is discretized in Eq(9). Since		ݔ ∈ ܺ, for any feasible MILP solution, only
one of the	ݖ variables in Eq(11) is active (≥ 0	∀݉). From Eq(9) we observe that, for any row	݅, the
constants	ܤ are the same despite the value of	݆. If we look at a complete row ݅ of the matrix B, we
observe that each active	ݖ variable is preceded with a different element in that row. In the linear
programming (LP) relaxations however, the assignment constraints in Eq(2), Eq(3) and Eq(4) are relaxed

1310

and therefore multiple	ݖ variables are active. When minimizing over Eq(9) the LP relaxation will give as
large values as possible to the variables	ݖ preceded by the lowest constants	ܤଵ while the 	ݖ		variables
that are preceded by the largest constants,	ܤெ, will be as small as possible. In other words, the variables
with the largest impact on the value of the objective function will be as close to zero as possible in the LP
relaxation. Therefore, we will next show how to restrict these variables in order to tighten the whole
formulation.

3. Bounding the auxiliary variables
In this section we show two different approaches for adding cuts to the original problem.

3.1 Largest elements
In order to increase the value of the ݖ variables preceded by large constants we can add lower bounds
on the sum of those variables. By choosing the p largest values from every row in B and defining a new
matrix ܤ௨	 where:
 ܾ௨ = ൜1, if	 b୧୨ ≥ the	th	largest	element	in	row	݅,0,								otherwise,																																																			 (18)

we obtain a new QAP whose optimal solution equals the highest right-hand side value for the cut. Since
we were changing all the largest elements in matrix B to one and removing the rest, the sum of the ݖ
variables preceding the largest values has to be larger than the optimal solution of that problem. Therefore
we can add the following cut:
 ∑ ∑ ெݖ ≥ 	min	(QAPሼܤ|ܣ௨ሽ)	∀	 = 1,2,… , ܷ,	 (19)

where ܯ corresponds to all those variables that are preceded by a constant larger than or equal to the pth
largest element in row ݅	of the matrix B and ܷ is the maximal amount of unique elements in a row of B. In
other words we add cuts until we have all the ݖ variables on the left-hand side of Eq(19).

3.2 Smallest elements
In the same way as the lower bounds on the sum of the ݖ variables preceded by the largest constants
are added, upper bounds on the sum of the the ݖ variables preceded by the smallest constants can be
added. Now, by choosing the p smallest values from every row in B and defining a new matrix ܤ	 where:
 ܾ = ൜1, if	 b୧୨ ≤ the	th	smallest	element	in	row	݅,0,					otherwise.																																																								 (20)

Now, by maximizing instead of minimizing the new problem QAP൛ܣหܤൟ we get the right-hand side for the
following cut: ∑ ∑ ݖ ≤ max	(QAP൛ܣหܤൟ	∀	 = 1,2, … , ܷ), (21)

where ݉ corresponds to the variables that are preceded by constants smaller than or equal to the th
smallest element of row ݅. By bounding the elements preceded by smaller elements, Eq(11) will force the
other variables to take larger values and therefore the lower bound will also become higher.

3.3 Sub-optimal cuts
Unfortunately, finding the optimal cuts yields a new QAP that is no easier than the original QAP. Therefore
we use a suboptimal solution for the new sub-problems, which can be found very quickly, to generate the
cuts.

For the cuts in Section 3.1, the rows of matrix A are sorted in ascending order (with the diagonals
excluded) while the rows of ܤ௨ are sorted in descending order, i.e. all elements equal to one are to the

1311

left of the matrix. By only changing the row order of matrix B we obtain a valid underestimating LP problem
for the problem in Section 3.1. In the formulations below ݔ are continuous variables.

 min∑ ∑ େܤୗୖܣ (22)

s.t. Eq (8) and ܤେೕ 	= ∑ ୀଵ			ݔ	ୗୖೕܤ 	∀݅, ݆. (23)

On the other hand, for the cuts in Section 3.2 the rows of both matrix A and ܤ are sorted in descending
order. max∑ ∑ େܤୗୖܣ (24)

s.t. (8) and ܤେౠ 	= ∑ ୀଵ			ݔ	ୗୖೕܤ 	∀݅, ݆. (25)

Eq (23) and Eq (25) are derived from applying Eq(7) on the sorted B matrices respectively. Therefore only
the rows of the sorted B matrices are switched. Eq(22) gives a valid lower bound for	min	(QAPሼܤ|ܣ௨ሽ)
while the solution of Eq(24). Is a valid upper bound for	max	(QAP൛ܣหܤൟ. The above LP problems are
easily solvable and all p cuts can be calculated in a fraction of a second even for the largest instances
from QAPLIB. However, the solution quality is considerably poorer than for the optimal cases.

3.4 Example

We will illustrate our examples with the following small QAP instance:

ܣ = ൦0		5		3		75		0		4		93		4		0		87		9		8		0൪ 								and							ܤ = ൦0		1		1		61		0		2		21		2		0		36		2		3		0൪ 	
When discretizing the first row as in Eq (9) to Eq (11), of the above example, two auxiliary variables ݖ are
needed for every ܾଵᇱ in that row. The objective function (Eq (9)) for the first row will now be ∑ ଵଵݖ1) +ୀଵ6ݖଵଶ)	. When solving the LP relaxation for the problem the sum for the variables ∑ ଵଵୀଵݖ1 will take up as
much as possible of Eq (11) while the second part of the sum, ∑ ଵଶୀଵݖ6 , will be as small as possible.

In the above instance, ܷ = 3, i.e., the maximum number of unique elements in a row of the matrix B.
Therefore two cuts will be added in both cases. The new matrices	ܤ௨ and ܤ are shown below for both = 1 and = 2.

௨భܤ = ൦0		0		0		10		0		1		10		0		0		11		0		0		0൪ , ௨మܤ	 = ൦0		1		1		11		0		1		10		1		0		11		0		1		0൪ భܤ						, = ൦0		1		1		01		0		0		01		0		0		00		1		0		0൪ , మܤ		 = ൦0		1		1		11		0		1		11		1		0		00		1		1		0൪					

Eq(22) and Eq(23) are applied on the matrices below in order to calculate the sub-optimal cuts for Section
3.1. Since we have sorted the matrices and only change the order of the rows in the matrices	ܤୗୖ௨భ
and	ܤୗୖ௨మ we obtain a poorer lower bound than by solving the QAP in section 3.1.

ୗୖሬሬሬሬሬሬሬሬሬሬሬሬԦܣ = ൦3		5		7		04		5		9		03		4		8		07		8		9		0൪	 , ୗୖ௨భܤ	 = ൦1		0		0		01		1		0		01		0		0		01		0		0		0൪	,									ܤୗୖ௨మ = ൦1		1		1		01		1		1		01		1		0		01		1		0		0൪

And when calculating the sub-optimal cuts for Section 3.2 the following matrices are used.

1312

ୗୖശሬሬሬሬሬሬሬሬሬሬሬሬܣ = ൦7		5		3		09		5		4		08		4		3		09		8		7		0൪ , ୗୖభܤ = ൦1		1		0		01		0		0		01		0		0		01		0		0		0൪,								ܤୗୖమ = ൦1		1		1		01		1		1		01		1		0		01		1		0		0൪		

As can be seen from above, changing the order of the rows in ܤୗୖభ 	and ܤୗୖమ , as in Eq (25), will affect
the solution value of Eq (24).

4. Results
All test runs were conducted on a 2.8 GHz Intel-i7(quad core) computer with 4 GB of RAM. CPLEX 12.5.0
was used as the MILP and LP solver. In Table 1, the root node bounds for some instances from the
QAPLIB are shown. As can be seen, adding simple cuts can improve the root node bound considerably.
These cuts don’t require any computational effort since we are only solving a few LP problems.
In Table 2 we show the bounds if the sub-problems are solved to optimality. In the examples, the sub-
problems require roughly the same amount of computational effort as the original problem. However, using
a good lower bound technique, giving close to optimal lower bounds in a relatively short computational
time, could make these cuts very effective.

Table 1: Lower bounds in the root node for some smaller instances from QAPLIB when adding the sub-
optimal cuts.

Instance Opt. Sol. DLR-LB Eq (22) Eq (19) Eq (19), Eq(22)

 nug12 578 409 487 422 487
nug14 1,014 719 851 728 851
nug16b 1,240 869 1,019 890 1,019
nug30 6,124 3612 4,519 3,867 4,519
rou12 233,528 176,045 192,242 192,939 194,065
rou15 354,210 251,150 275,338 277,095 277,525
rou20 725,522 500,814 553,535 555,067 560,236
had12 1,652 1,416 1,526 1,469 1,526
had20 6,922 5,286 6,127 5,928 6,127
tai12a 224,416 172,852 183,166 182,542 184,157
tai20a 703,482 464,802 537,327 537,616 539,837
ste36a 9,526 5,780 7,102 5,782 7,102
ste36b 15,852 5,945 8,611 5,945 8,611
ste36c 8,239,110 5,518,062 6,381,100 5,518,062 6,381,100
esc16a 68 26 38 38 38
esc16b 292 196 220 220 220
esc16c 160 60 83 83 83
esc32a 130 11 35 35 35
esc32b 168 48 96 96 96
esc32c 642 309 350 350 350
esc32d 200 70 106 106 106
esc32h 438 156 257 257 257
esc64a 116 38 47 47 47
tho30 144,936 79,719 90,206 79,742 90,206
wil50 48,816 32,987 37,911 36,413 37,911

1313

Table 2: Lower bounds for a few instances with optimal cuts.

Instance Optimal value DLR-LB LB-subcuts LB-optcuts
Nug12 578 409 487 501
esc16a 68 26 38 68
esc16b 292 196 220 292
esc16c 160 60 83 160
tai12a 224,416 172,852 184,157 198,165
had12 1,652 1,416 1,526 1,592
rou12 235,528 176,045 194,065 207,717
rou15 354,210 251,150 277,525 300,001

5. Conclusions
We have showed that we are able to improve the root node bound for many instances by adding a few
rather simple cuts. For some of the sparse instances we have showed that adding the optimal cuts yields
root node bounds that are equal to the optimal solution. However solving the sub-problems to optimality
seems as difficult as solving the underlying QAP itself. If all the sub-problems were to be solved to
optimality, better cuts could be derived. Future work should address how to calculate close to optimal
lower bounds in less computational time for the sub-problems.

Acknowledgments

Financial support from the Foundation of Åbo Akademi University, as part of the grant for the Center of
Excellence in Optimization and Systems Engineering are gratefully acknowledged.

References

Eschermann B., Wunderlich H.J. 1990, Optimized synthesis of self-testable finite state machines. Fault-
Tolerant Computing, FTCS-20. 20th International Symposium. 390-397

Fischetti M., Monaci M., Salvagnin D., 2012, Three ideas for the Quadratic Assignment Problem.
Operations Research 60, 954-964.

Hahn P.M., Saltzman M.J., 2010, A New Branch-and-Bound Solver for the Quadratic Assignment Problem
Based on the Level-3 Reformulation-Linearization Technique, Studia Informatica Universalis,
Combinatorial Optimization in Practice 8.2, 97-106.

Koopmans T. C., Beckmann M., 1957, Assignment problems and location of economic activities,
Econometrica 25, 53-76.

Loiola E.M., Abreu N.M., Boaventura-Netto P.O., Hahn P., Querido T., 2007, A survey for the quadratic
assignment problem, European Journal of Operational Research 176 (2), 657-690,
DOI:10.1016/j.ejor.2005.09.032.

McCormick G.P., 1976, Computability of global solutions to factorable nonconvex programs: Part I -
Convex underestimating problems. Mathematical Programming, Springer Berlin / Heidelberg, 147-175

Nyberg A., Grossmann I. E., Westerlund T., 2013a, An efficient reformulation of the multiechelon
stochastic inventory system with uncertain demands, AIChE J 59(1), 23-28. DOI:10.1002/aic.13977

Nyberg A., Westerlund T., 2012, A new exact discrete linear reformulation of the quadratic assignment
problem. European Journal of operational Research 220(2), 314-319.

Nyberg A., Westerlund T.,Lundell A., 2013b. Improved Discrete Reformulations for the Quadratic
Assignment Problem, Lecture Notes in Computer Science 7874, 193-203. DOI: 10.1007/978-3-642-
38171-3_13

Peng J., Mittelmann H., Li.X., 2010, A new relaxation framework for quadratic assignment problems based
on matrix splitting, Mathematical Programming Computation 2, 59-77.

Taillard É.D., 1991, Robust tabu search for the quadratic assingnment problem, Parallel Computing 17,
443-455.

Taillard É.D., 1995, Comparison of iterative searches for the quadratic assignment problem, Location
Science 3 (2), 87-105. DOI: 10.1016/0966-8349(95)00008-6

1314

