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We present an approach to closed-loop online model-based redesign of experiments for system 
identification. Special attention is given to the compliance with safety restrictions and operating 
requirements during online experiments. For doing so, we propose the integration of a controller into the 
system identification algorithm. To avoid numerical problems regarding ill-conditioned matrices an 
algorithm for local parameter identifiability analysis is used. In order to demonstrate the benefits of our 
approach, the proposed procedure is validated in a real case study. Additionally, a PI-controller is tuned for 
the identified system. Moreover, the accuracy of the system parameters estimated by the proposed 
strategy was compared with results for a conventional open-loop step response technique.  

1.  Introduction 
The idea of an optimum experimental design (OED) has been discussed since the 1960s (Mehra, 1974). In 
this work, we assume that the model structure of the process behavior is defined, whereas the values of 
the model parameters are unknown and need to be estimated. Thus, the discrimination between 
alternative models is not considered. According to the conventional concept of OED for parameter 
determination (Bauer et al. 2000, Franceschini and Macchietto, 2008), the parameter estimation and 
redesign task are usually computed for open-loop experiments, also referred to as sequential experiment 
design. Accordingly, the planning, execution and analysis of experiments is realized consecutively, and 
new information is used only after termination of an experiment. However, since model parameters are 
unknown, it is difficult or even impossible to execute experiments in compliance with safety restrictions and 
operating requirements.  
In the related field of process control, there are two types of methods for system identification: the open-
loop and closed-loop identification methods. The former sets the input variables, whereas the latter 
manipulates the set-points. The open-loop identification is simple, though experiments are sensitive to 
disturbances and are not applicable for unstable processes (Rajapandiyan and Chidambaram, 2012). 
Furthermore, a direct manipulation of design variables (for instance the stepwise change in the reactor 
temperature) is often impossible or prohibitive on a real plant. In contrast, closed-loop experiments are 
more robust against disturbances (Rajapandiyan and Chidambaram, 2012). To summarize, the 
conventional open-loop strategy may lead to undesirable state variable changes and as new information is 
processed with a possibly large time delay, it may also lead to longer and more expensive experiments.  
We propose a closed-loop online model based redesign of experiments (CL-OMBRE) which overcomes 
the disadvantages of the open-loop method by introducing a controller to the system identification to 
comply with safety conditions. The controller gain and set-point represent the experiment design variables 
and are influenced directly. 
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2. Problem statement 
We represent a dynamic model of a given process described by a set of differential algebraic equations 
(DAE’s) ݕሶ (ݐ) = ,ݐ)݂ ,(ݐ)ݕ , u(ݐ)),  ݕ(ݐ) =  (1) ()ݕ

where ݐ ∈ ;ݐൣ (ݐ)ݕ ,ா௫,௫൧ represents the timeݐ ∈ ℝே denotes state variables,  ∈ ℝே is a set of 
parameters to be estimated and (ݐ)ݑ ∈ ℝேೠ represents the set of time-varying control variables or so-
called design variables. 
Parameter estimation (PE) is done using standard method based on maximum likelihood criterion: ̂ = min	݃ݎܽ ߮ா(ܷି,  (
s.t. ߮ா(ܷି, ( = (ܻି(ܷି, ( − ܻ)் ∙ ௬ିߑ ଵ ∙ (ܻି(ܷି, ( − ܻ) (2) DAE’s	(Eq.	(1))	
where ܻି(ܷି, ( ∈ ℝே∙ே is the vector of the responses predicted by the model for all discrete time 
instances ݅ ∈ 1,… , ܰ, ܻ ∈ ℝே∙ே is the vector of the obtained measurement data, ܷି ∈ ℝேೠ∙ே denotes 
the pice-wise constant control actions. Finally, Σ୷ ∈ ℝே∙ே×ே∙ே represents the measurement-covariance 
matrix. The result of the parameter estimation is denoted by ̂. Measured data is considered to be a 
random variable because of random measurement errors. As a result, the solution of the parameter 
estimation problem is also random. The model-based experimental design strategy (ED) aims to design 
experimental settings ܷା such that they maximize the accuracy of the parameter estimation. We describe 
the accuracy of the parameter estimation by the variance-covariance matrix ܥ ∈ ℝே×ே. Here, the 
optimization problem is formulated as follows: ܷା∗ = ݉݅݊శ ߮ா(ܥ(ܷି, ܷା, 	((̂
s.t. DAE’s	(Eq.	(1))	
ܻ ≤ ܻ(ܷା, (̂ ≤ ܻ௫ 

(3)

where ܷା ∈ ℝேೠ∙ is the piece-wise constant trajectory of future control actions, ℎ represents the length of 
a receding (future) horizon (see section 3). The functional ߮ܦܧ characterizes the chosen optimization 
criterion. Common design criteria are so-called A-, D- and E-optimal criteria whose definitions can be 
found in (Franceschini and Macchietto, 2008). In the following we use the A-optimal criterion that 
represents the trace of the variance-covariance matrix and minimizes the mean parameter standard 
deviations. ߮ா = ௧()ௗ	()  (4) 

The variance-covariance matrix C is obtained from the inverse of the Fischer information matrix ܨ ∈ℝே×ே (Galvanin et al., 2007). ܥ = ଵିܨ = Fି(ܷି, (̂ + Fା(ܷା, (̂ = ܨ + Fା(ܷା,  (5) (̂

In Eq. (5)  ܨ denotes a constant part of the information matrix which depends on past control actions ܷା. 
Accordingly, in Eq. (5) only vector ܷା is optimized. The calculation of the Fisher matrix is based on 
sensitivity coefficients ܵ ∈ ℝே∙ே×ே  for each estimated model output ܨ(ܷ, (̂ = ்ܵ(ܷ, (̂ ∙ ௬ିߑ ଵ ∙ ܵ(ܷ, 	(̂ (6)	
We apply parameter scaled sensitivities as S୧୨ = 	 డ୷డොೕ ݅∀  ;̂ ∈ 1,… , ௬ܰ ∙ ܰ, ݆ ∈ 1,… , ܰ (Franceschini 

and Macchietto, 2008). 
Note that operation requirements or safety restrictions have to be considered by the formulation of the ED 
optimization problem. However, by the formulation of the PE optimization problem you do not need to 
consider these constraints because measured data already includes these process limitations. 

3. Closed-loop online optimal model-based redesign of experiments (CL-OMBRE) 
In the proposed strategy (see Figure 1), the system identification is done with the closed-loop control in 
order to satisfy safety requirements. Note that all experiments are executed only with a P-controller. We 
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select the controller gain ݇ and the set-point ݕ௦as experiment design variables ܷ = ൣ݇,  ௦൧். The outputݕ
of the controller (control actions) ݑ and the controlled variable ݕ are measured. The redesign technique 
implemented by the CL-OMBRE strategy adopts well known concepts from model predictive control (MPC) 
(see Camacho and Bordons, 2004). Accordingly, the experiment time [ݐ,  ୶୮,୫ୟ୶] is divided intoݐ
equidistant time intervals with piece-wise constant experiment design variables ݑ, with length ∆t = 	 t୩ −t୩ିଵand ݇ = 1,… , ாܰ௫ being the number of intervals. In each interval ݇ all prior measurements are 
considered in the parameter estimation problem in Eq. (2). Thus, the number of elements in the vector ܻ 
increases with ongoing experimental time. In contrast, the future trajectory of control actions ܷା is 
computed for a receding horizon of a fixed length ℎ (see section 2) (solution of Eq. (3)).  
A major challenge for the experimental application of the CL-OMBRE algorithm is to determine the number 
of parameters that can be reliably estimated from available measurement data. Generally, those 
parameters whose sensitivities are low or non-exist are not identifiable. In this case, the sensitivity matrix 
is singular from a numerical point of view and leads to ill-conditioned PE and ED optimization problems. In 
order to avoid this problem we apply the Subset Selection technique (SsS) presented by Barz et al., 
2012a. The SsS may reduce the parameter set ܰ to a subset with dimension ݎ. The set dimension ݎ 
represents the rank of the sensitivity matrix with linear independent columns of ܵ. In turn, the reduced 
sensitivity matrix ܵ ∈ ℝே∙ே×, with ܵ ⊆ ܵ, only represents sensitivities of remaining or active parameters ̂. In the CL-OMBRE algorithm, first, the initial guess of the model parameters  and an initial experiment 
design ܷା as well as the length of the receding time horizon are defined. At the end of each time interval ݇ 
we gather measurement data ܻି and set design variables ܷାଵା .  We also update the current parameter 
estimate ̂ (solution of the PE problem) based on available measurements ܻି and ܷି . After that, based 
on the last results of the parameter estimation the vector of simulated states variables ܻି (ܷି ,  ) and thê
sensitivity matrix ܵି |ೖୀො are generated. Next, we determine the reduced sensitivity matrix ܵ with respect 
to the active parameters ̂ computed by SsS. Based on these results, we calculate an optimal action for 
the next sub-experiment ܷାଵା∗  (solution of the ED problem). The algorithm terminates if tExp,max is reached, 
the accuracy of the validated parameters is sufficient (e.g. ߮ா ≤ ߮ா ) or the realized improvements in 
the parameter accuracy are smaller than a given threshold (߮ா − ߮ିଵா ≤   .(ܮܱܶ
Note that all computations need to be performed in real-time, within ∆t. Hence, we have set an upper limit 
to the number of iterations performed by the optimizer (see Eq. (2) and Eq. (3)). 

4. Case study 
The efficiency of the proposed strategy is evaluated in a real case study. We have applied our technique to 
the identification of a temperature controlled tank. All experiments are performed on the PCS Compact 
Work Station from Festo Didactic GmbH & Co. KG, Denkendorf, Germany. The process monitoring and 
control is realized using the ABB Freelance Controller AC 700F with Analog Input/Output Module AX 772F. 
All numerical computations are implemented in the programming environment Matlab R2010a. The 
communication is realized using the ABB OPC-Server and the OPC Toolbox from Matlab. 
We conducted our experiments by changing the temperature controller settings (controller gain kୡ and 
temperature set-point yୡୱ୮) which in turn impact the temperature in the tank by changing the heater power  

 

Figure 1: CL-OMBRE strategy 

(manipulated control variable ݑ). In these experiments we have two measured responses of the process: 
heater power   and the temperature of the tank (controlled variable ݕ). The systems dynamic is of first 
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order with time delay. In order to avoid discontinuities, the dynamic closed loop system is approximated by 
a DAE of fourth order (see Eq. (7)). Disturbances are neglected.  ହ ∙ ௗర௬(௧)ௗ௧ర + ସ ∙ ௗయ௬(௧)ௗ௧య + ଷ ∙ ௗమ௬(௧)ௗ௧మ + ଶ ∙ ௗ௬(௧)ௗ௧ + (ݐ)ݕ = ଵ ∙ (ݐ)ݕ  (ݐ)ݑ = ݇(ݐ) ቀݕ௦(ݐ) − ቁ (7) 0%(ݐ)ݕ ≤ (ݐ)ݑ ≤ 90% 

All measurements are taken with a sampling time of 10 s. We define ∆ݐ = ௫,௫ݐ ,ݏ	100 =  The .ݏ	3700
receding horizon covers the length of three intervals. The initial parameter guess for the model parameters 
as well as the initial values of the design variables for the receding horizon are set to  = and ܷା 	்[6ܧ6.0		5ܧ7.0		4ܧ3.0		700.0		2.0] = [݇,, ,௦]், with ݇,ݕ = [3.0		5.0		15.0]் and ݕ,௦ =[24.0		29.0		25.0]் °C, respectively. All computations were performed on a 32 bit Linux platform with an 
Intel® Core™ i7, 2.20 GHz and 2.6 GB RAM. The PE and ED optimization problem were solved with 
Matlab using its Optimization Toolbox solver lsqnonlin (trust-region-reflective) and fmincon (sqp), 
respectively. For the DAE system presented in Eq. (1) we used the sDACl solver which is a sparse DAE 
solver based on the orthogonal collocation on finite elements method. For more details see Barz et al, 
2011; Barz et al, 2012b. 
4.1 System identification with CL-OMBRE 
The A-optimal criterion is used in the experimental design problem formulation. Though, in contrast to the 
algorithm described in section 3, the only termination criterion which was used is the total experimental 
duration. 
First, an offline open-loop system identification based on step responses was conducted. Here, six 
experiments were performed with a total of six random step-wise changes in the heater power (controller 
output). Then, the model parameters (see Eq. (7)) were estimated based on the gathered measurements. 
The results for offline open-loop experiments are given in Table 1. Second, a so-called conventional ED 
based on step-wise changes of ܷ was realized (the problem in Eq. (3) was not solved). The design 
variables ܷ were randomly generated with an uniform distribution. The results are shown in Table 1. It 
was not possible to identify all model parameters using this conventional ED. The number of identifiable 
parameters selected by the SsS algorithm is four out of five. Third, a closed-loop optimum experiment was 
conducted. Here, both, PE and ED optimization problems as well as the SsS problem were solved online.  

 

Figure 2: Results of the experiment with A-optimal design. Here ܶ represents the operating point 

The results of this experiment are presented in Figure 2 and Table 1. This experiment took the same time 
as the second one (same mode of operation, in both cases we used a controller). In contrast to the offline 
open-loop experiments, there is no need to wait for a steady state. Therefore, the closed-loop experiments 
are more time-efficient especially in online mode. Finally, in order to verify the accuracy of the estimated 
model parameters obtained from the different identification methods discussed above, a reference closed- 
loop experiment was executed, with random step-wise changes of U (same conditions as in the online 
closed-loop (conventional) ED). Here, both, PE and ED optimization problems were not solved and only 
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measured data was collected. The duration of this experiment was 1.03 h. We were then able to verify the 
accuracy of the previous three models based on how good they were able to predict the outcome of the 
fourth experiment. The results are shown in Figure 3, where y୭୮ denotes the operating point of the 
process. The mean residual calculated as a weighted Lଵ norm 1 N୫⁄ ∙ ∑ ‖y୧୫ − y୧‖ଵౣ୧ୀଵ are presented in 
Table 1. All parameter values in Table 1 are normalized by their respective initial guess taken from section 
4, with pത = pො p⁄ . Symbol () denotes non-active (non-identifiable) parameters. It can be seen, that for the 
open-loop as well as the unplanned closed-loop experiment only a subset of the parameter space is 
identifiable (parameter pହ was not identified), whereas, using optimum closed-loop ED, all parameters 
could be identified. Moreover, compared to the conventional design the accuracy of the model parameters 
was improved and the necessary experiment time was also reduced by a factor of three. 

 

Figure 3:  Model prediction versus measurement for the estimated parameter sets 

Table 1: Normalized parameters and t୶୮,୫ୟ୶obtained from closed-loop and open-loop experiments and 
mean residual of the fourth experiment  
Variables ̅መଵ ̅መଶ ̅መଷ ̅መସ ̅መହ ݐா௫,௫, [h] Mean residual

Offline open-loop (conventional ED) 0.10 0.58 0.53 0.59 (0.0034) 3.1 1.7541 
Online closed-loop (conventional ED) 0.12 0.71 0.60 0.28 (0.00) 1.03 1.5589 
Online closed-loop (optimum ED) 0.10 0.55 0.60 0.39 0.17 1.03 1.0109 

4.2 Application of the CL-OMBRE strategy to tune a PI-controller 
In this section we compare the CL-OMBRE technique with the conventional method by using the identified 
model to tune a PI-controller (controller parameter ݇ܿ, ܶ݅). For this purpose we calculated the controller 
parameters by minimizing the integrated absolute error (IAE) constrained by a maximum overshoot of 2 %. min,் න ஶ							ݐ݀|(ݐ)ܧ|

 							 																															 with (ݐ)ܧ = (ݐ)ݕ − (ݐ)ݕ (ݐ)௦ݕ − (ݐ)௦ݕ(ݐ)௦ݕ ≤ 0.02				 																															  

(8)

Results of the controller tuning based on model obtained from open-loop and closed-loop experiments are 
presented in Figure 4. The experimental data of the controller performance confirms that the model 
obtained from the CL-OMBRE technique describes the process behavior sufficiently and we were able to 
tune a controller which is able to comply with operating requirements (overshooting below 2 %). In 
contrast, the model obtained from open-loop experiments shows poor conformity with process behavior. 
Moreover, the overshooting exceeded operating requirements with a rate of 5 %. 

5. Discussion  
The CL-OMBRE technique has been presented, which allows online system identification through closed-
loop experiments. The technique has been validated experimentally for a temperature control system and 
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Figure 4: Step responses using PI-settings obtained through the CL-OMBRE and open-loop strategy.  

has proved to be more efficient than a conventional open-loop method. The accuracy of the model 
parameters is also improved. In the CL-OMBRE method, design variables are represented by a set-point 
and a controller gain, all design variables are directly adjustable. The P-controller used in the CL-OMBRE 
strategy acts as a watchdog to ensure that the defined restrictions are kept during the whole experiment. 
Finally, the proposed procedure allows us to significantly reduce the experimental effort in comparison to 
the conventional method (for the presented application the proposed technique is three times faster in 
contrast to the open-loop method) and in turn decrease experimental costs. For the presented case study, 
it could be shown that the closed loop system was stable and safety restrictions were kept during online 
identification. However, the stability of the closed-loop system was not enforced directly. Generally, the 
controller gain kୡ is responsible for keeping the stability of the closed-loop system and the changes in the 
set-point yୡୱ୮ for compliance with safety restrictions. In both cases, stability requirements and safety 
restrictions need to be considered as constraints in the formulation of the ED problem. Thus the CL-
OMBRE method needs an extension to consider stability conditions in the ED problem formulation, e.g. all 
the roots of the characteristic equation for the closed loop system dynamics must have negative real parts.  
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