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Chapter 1 In this work, we present a parameter estimation problem for Dynamic Flux Balance Analysis to 
study the production of ethanol by a mutant strain of the cyanobacterium Synechocystis sp. PCC 6803, as 
well as experimental data. This modified strain harbors the genes pdc and adhB from Zymomonas mobilis. 
The model includes two major components: (1) a dynamic model with mass balances for biomass, ethanol, 
nitrate, phosphate, internal nitrogen and phosphorus, and (2) a steady state genome-scale metabolic 
Linear Problem (LP) model. The biomass equation includes limiting functions for temperature and kinetics 
of growth inhibition by ethanol toxicity. Limitation of light by biomass accumulation is also taken into 
account. We formulate the dynamic parameter estimation problem with a weighted least-squares objective 
function, subject to dynamic mass balance equations at the bioreactor level and the intracellular LP model. 
The problem is solved in GAMS through a simultaneous optimization approach. The data sets for 
parameter estimation were obtained in experiments performed over 73 hours in batch liquid cultures. 
Numerical results provide useful insights on the ethanol production by the genetically modified strain within 
the context of genomic-scale cyanobacterial metabolism. 

1. Introduction 
Cyanobacteria or blue-green algae constitute an ancient and diverse group (150 genera with about 2000 
species) of autotrophic prokaryotes that played a crucial role in the atmosphere change from oxidative to 
reductive during the Precambrian period (Komarek, 2003). These microorganisms have developed 
adaptive mechanisms that allowed them to survive within a wide range of habitats, including freshwater, 
marine and terrestrial environments. They have a wide variety of morphologies, metabolism and cell 
structures and are very important in the nitrogen cycle in marine environments and in the dynamics of 
nitrogen and CO2 in the biosphere (Zehr et al., 2001). Cyanobacteria have been studied for a long time, 
they are considered as models of biological processes such as oxygenic photosynthesis which is the same 
process performed by higher plants. In the last decades they have attracted attention due to their potential 
to obtain commercially interesting products, such as biofuels and pharmaceuticals. Advances in metabolic 
engineering and synthetic biology based on gene sequence, biochemical and physiological data in public 
databases together with the constant improvement of mathematical tools can help speed the development 
of desirable phenotypes for production of several interesting bio-products (Picataggio, 2009). 
In this work we formulate a parameter estimation problem for Dynamic Flux Balance Analysis approach to 
study the production of ethanol by a mutant strain of the cyanobacterium Synechocystis sp. PCC 6803. 
We formulate a dynamic parameter estimation problem with a weighted least-squares objective function 
subject to dynamic mass balance equations at the bioreactor level and an intracellular LP model. The 
problem is solved in GAMS through a simultaneous dynamic optimization approach.  
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2. System  

Chapter 2 The system under study in this paper is the photosynthetic ethanol production by a mutant strain 
of Synechocystis sp. PCC 6803 obtained by Vidal Vidal (2009) in batch liquid culture. This modified strain 
harbors the genes pdc and adhB encoding for the enzyme pyruvate descarboxylase (EC 1.2.4.1), which 
catalyzes the non-oxidative decarboxylation of pyruvate to acetaldehyde and CO2 and the alcohol 
deshydrogenase II (EC 1.1.1.1), which participates in the reduction of acetaldehyde to ethanol. Both 
heterologous genes from Zymomonas mobilis are cloned under the control of the promoter of the 
endogenous gene petE in the Synechocystis mutant.  

1. Methods 

1.1 Dynamic Flux Balance Analysis 

Flux Balance Analysis (FBA) is a genome-scale constraint- based modelling approach for metabolic 
networks (Höffner et al. 2012) where the constraints are the steady state mass balances corresponding to 
metabolic fluxes (reactions) around each node (metabolite). The steady state assumption is justified by 
high reaction rates within the microorganism. In this way, the mass balances are described by a set of 
lineal equations, 

 (1) 

where A is the m (metabolites) x n reactions) stoichiometric matrix and  are the vector of flux (metabolic 
reactions of the network). To solve the intracellular fluxes and the uptake and secretion rates of the cell, a 
linear programming problem (LP) is formulated where the objective function is the maximization of the 
growth rate (Varma and Palsson, 1994). Solving the LP problem we obtain the metabolic flux distribution of 
the cell (Paulo et al., 2011). In order to describe the dynamics of the substrates, products and biomass 
concentrations and metabolic fluxes inside the cell we have extended FBA to a Dynamic Flux Balance 
Analysis approach, which allows modeling the interaction between the cellular metabolism and the 
environment (Höffner et al., 2012). Therefore, an LP problem is embedded within a dynamic model that 
takes into account mass balances for main substrates, products and biomass at the bioreactor level, 
allowing the inclusion of kinetic expression. 

3.1.1 Dynamic mass balances  

We formulate mass balances for external metabolites and biomass to model the environmental changes 
during Synechocystis growth by substrate consumption and biomass and product accumulation. We also 
include mass balances for internal phosphorus and nitrogen to model the storage of the main nutrients.  
The resulting Differential Algebraic Equation (DAE) problem is as follows:   
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Where, X, PO4, NO3, E, PI and NI represent biomass, phosphate, ethanol, nitrate, internal phosphate and 
internal nitrate, respectively. The net growth rate (μ)  is calculated affecting the maximum growth rate 

(
*
growthv ) by limiting functions for ethanol concentration and temperature. Table 1 shows description and 

values of the model parameters.  

3.1.2 LP problem 

The internal metabolism is represented by the following optimization problem: 
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The intracellular and extracellular models are linked by growth rate, absorbed photon flux ( APFv ) and 

phosphorus uptake rate (
4POv ). The model includes a limiting function for the light uptake that takes into 

account the decrease of light availability by biomass accumulation in the reactor. The phosphate uptake 
incorporates a kinetic expression depending on both external and internal phosphorus concentration. 
Bounds over these fluxes represent additional constraints for the inner problem.   
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1.2 Experimental data 

Synechocystis sp. PCC 6803 was cultivated in BG-11 medium at 30 °C under continuous light (100 μE m-2 

s-1) and air bubbling enriched with 1% CO2, which is considered as a CO2 rich medium. Liquid batch 
cultures were performed by duplicate for wild type and ethanol mutant strains for 73 h from the beginning 
of the exponential growth phase of growth. Biomass was estimated by OD730, Chlorophyll a concentration 
and total organic carbon. Nitrate and phosphate in the medium were measured by spectrophotometric 
methods and ethanol by an enzymatic method described by Kaplan and Ciotti (1957). 

1.3 Parameter estimation problem 

Chapter 3 The parameter estimation problem for Synechocystis sp. PCC 6803 has the following general 
formulation:  
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Chapter 4 Subject to DAE system Eqs. (2)-(10), which represent extracellular environment and the LP 
Eqs. (11)-(18) representing Synechocystis sp. PCC 6803 metabolism. 
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Chapter 5 Where lx  are DN  sets of experimental measurements obtained at time lt , and ( ) ( )[ ]T
l

T
l tztx =  

are the corresponding calculated differential variables for measured components. W is the weighting 
matrix for the least squares function (Eq. (19)). In this typical parameter estimation problem were defined 
data sets in each period, the state variables remains continuous over all periods, and parameters (p) are 
the same in all periods (Bard, 1974). pL and pU are the lower and upper bounds over the estimated 
parameter while X(0), E(0), PO4(0) and NO3(0) stand for initial conditions for the biomass, ethanol, phosphate 
and nitrate concentrations respectively. 
Chapter 6 In order to embed the outer optimization problem and the inner one, it is well known that the 
Karush-Kuhn-Tucker (KKT) optimality conditions are necessary, to represent the intracellular model in this 
work, and transform the original bilevel problem into a single level one. The dynamic parameter estimation 
problem corresponding to component mass balance equations and path constraints is transformed into a 
NLP through orthogonal collocation (Biegler et al., 2006) the problem and is solved in (General Algebraic 
Modelling System, Brooke et al., 2011) with the CONOPT solver.  

1. Results and Discussion 

We present the numerical results from solving the parameter estimation problem with a dynamic 
simultaneous approach for a batch ethanol production system for Synechocystis sp. PCC 6803 mutant.  
The batch time was 73 h. The time horizon was discretized with 73 finite elements and 2 collocation points, 
resulting a NLP of 88,337 equations and 58,063 variables. Table 1 shows the optimal values for the 
estimated parameters.  Figures 1-4 show state variables profiles as compared to experimental data. There 
is good agreement between experimental data for Synechocystis biomass, nitrate and ethanol 
concentrations and predicted values. During the initial phase, the model accurately reproduces the 
behaviour of the phosphate concentration. However, from after 30 hours, the model predictions do not 
exactly agree with experimental data from phosphate dynamics. Pitt et al., (2010) and Burut-Archanai et 
al., (2011) reported that Synechocystis sp. PCC 6803 has two phosphate transport systems, Pst1 and 
Pst2. Pst1 is a low-affinity and high-velocity transporter, which predominates in high phosphate 
concentrations, while Pst2 is characterized by a high-affinity and low-velocity. In this study, we take into 
account only one phosphate uptake kinetic for high concentrations. Both kinetic will be included in future 
work through complementarity constraints (Raghunathan et al., 2006).           

Table 1:  Parameters values used in model simulation and estimated parameter values. 

Symbol Description Value Units  

kd                     [mortality rate] 0.033 [1/h] Estimated value 

Kext              [light extintion coefficient] 16.748 [m2/g] Estimated value 

Ki [constant inhibition constant] 310.135 [mM] Estimated value 

Ynx [nitrogen biomass yield] 1.228 [mM/g] Estimated value 

UPmax   [maximum phosphate uptake] 0.244 [mM/h] Fixed 

UNmax [maximum nitrogen uptake] 0.184 [mM/h] Fixed 

KP [half saturation constant for phosphate uptake] 4.44 [mM] Fixed 

KN [half saturation constant for nitrogen uptake] 2.82 [mM] Fixed 

 
[maximum phosphate velocity rate] 0.184 [1/h] Fixed 

 [maximum light velocity rate] 150 [1/h] Fixed 
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Figure 1. Biomass concentration for measured and predicted profiles.  
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Figure 2. Phosphate concentration for measured and predicted profiles.  
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Figure 3. Nitrate concentration for measured and predicted profiles.  
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Figure 4. Ethanol production for measured and predicted profiles. 

2. Conclusions 

In this work, we have coupled in a simultaneous framework the interaction between environment and 
intracellular metabolism of an ethanol producer mutant of Synechocystis sp. PCC 6803. The parameter 
estimation problem has been formulated within a simultaneous dynamic optimization framework within 
GAMS 23.0, with CONOPT shows good agreement with experimental data.  
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