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 In the present work, the results of a complete dynamical analysis of open- and closed-loop continuous 
bioreactor for cultures of substrate inhibited aerobic microorganisms were presented. In the closed loop 
system the dissolved oxygen concentration was controlled at a pre-set value by means of a proportional-
integral feedback control scheme manipulating the inlet substrate concentration. A mathematical model 
was developed coupling the mass balance equation for the substrates (carbon-source and oxygen) and 
the controller. Solutions of both open- and closed-loop systems were assessed by means of parametric 
continuation technique and bifurcational analysis tools. The dynamics behavior was studied by changing 
the main operating parameters – dilution rate and gas-liquid mass transfer rate - and the controller 
parameters - gain and set-point – in a wide intervals.  We have found that the regimes strongly depend on 
the operating conditions. In particular, the open-loop unstable steady state may be stabilized in closed-
loop system, provided the proper choice of both the gain and the reset time for the selected set-point value 
of oxygen concentration 

1. Introduction 
Bioreactors operated under continuous steady state conditions are a versatile tool for characterization of 
microorganism growth kinetics and stoichiometry (Fraleigh et al. 1989; Lodato et al., 2007; Napoli et al., 
2011; Napoli et al., 2012; Olivieri et al. 2010; Olivieri et al., 2011). However, the stability of steady state 
operations of continuous cultures depends on operating conditions (Yano and Koga, 1969; Crooke et al. 
1980; Agrawal et al., 1982; Russo et al., 2008). Bioreactor control strategies may stabilize selected 
regimes and may allow to operate the bioreactor under intrinsically unstable steady states (Edwards, 1970; 
Edwards et al., 1972). The latter option was also supported by theoretical analyses (Di Biasio et al., 1978; 
Chang and Chen, 1984; Shimizu and Mastubara, 1985). Auxostat may optimize the bioreactor productivity, 
avoiding the wash-out conditions (Gostomoski et al., 1994). Turbidostats, nutristats and produstat were 
successfully proposed in literature (Di Biasio et al., 1981; Agrawal and Lim, 1984, Jayakumar and Lim, 
1989; Rutgers et al., 1993; Rutgers et al., 1996; Schröder et al., 1997).  
Olivieri et al. (2010) successfully applied the closed-loop oxystat configuration (Hodspoka, 1966) at a 
continuous bioreactor to stabilize steady state bioconversions. The study was aimed at the assessment of 
the specific growth rate kinetics of an aerobic Pseudomonas strain as a function of phenol, the inhibiting 
substrate (Viggiani et al., 2006).  
The analysis here presented is based on the reconstruction, via parametric continuation, of the solution 
and the bifurcation diagrams of a mathematical model describing a conventional bioreactor open-loop 
chemostat and the novel closed-loop oxystat. Both multistability, hysteretic behaviors and periodic regimes 
are found and described. The inlet substrate concentration, the set point oxygen value and the control gain 
were adopted as bifurcation parameters. Effects of bifurcation parameters were addressed by means of 
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solution and bifurcation diagrams. A thorough description of static and dynamic attractors was reported for 
operating and key control parameters typically adopted in experimental investigations. 

2. Theoretical framework 
The dynamical mathematical model of a continuous stirred tank aerobic bioreactor was characterized by 
constant dilution rate (D) and the inlet substrate concentration (SIN) in the feeding as manipulated variable. 
The specific growth rate was characterized by the Haldane-type inhibition model and the Monod-type 
model as regards the carbon source substrate and oxygen, respectively (Haldane, 1930). The 
maintenance contributions for substrate and oxygen uptake were included in the stoichiometry of the 
process (Pirt, 1965). The mass balances - referred to the liquid volume unit - for biomass, substrate, and 
dissolved oxygen extended to a continuous stirred tank reactor are: 
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The PI feedback control on the state variable O2 acts as follows: 
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where SET
2O  is the set-point value for O2, and IN

SSS  the steady state value of SIN calculated by means of the 

open-loop system Eq(1a-b-c). The closed-loop system is the combination of Eq(3) in Eq(1a-b-c).  
The dimensionless form of model equations was adopted for computation. The following dimensionless 
variables were introduced: 
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Table 1 reports the dimensionless equations describing the closed-loop system.  
Bifurcational analysis was carried with the MATCONT tool (Dhooge et al., 2003) of MATLAB® 2010 
implementing both the open-loop system and the closed-loop one. The continuation results are presented 
with two kinds of plots: the solution diagrams for O2

SET and SIN and Kc (bifurcation parameters), and the 
bifurcation diagram in the plane O2

SET- Kc The solution diagrams report, as a representation of the solution, 
either the oxygen concentration coming out of the reactor for the steady state solutions, or, for limit cycles, 
the maximum oxygen concentration value attained during the oscillations. These quantities are plotted 
versus one of the above indicated bifurcation parameters. The bifurcation diagram illustrates the loci of 
bifurcation points in the parameter space (Kubíček and Marek, 1983). Some simulation results, for 
interesting operating situations, are also reported.  
The convention adopted for the solution and bifurcation diagrams were: solid lines represent stable 
stationary solutions; dashed lines unstable stationary solutions; filled circles stable limit cycles; empty 
circles unstable limit cycles. 

3. Results and Discussion 
Figure 1A shows the solution diagram as the SIN is varied for KL = 200 and Da = 2. Three solution 
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branches exist: 1, 2, and 3. The trivial wash-out solution (XS=0, SS=1, O2
S=1) (3 in Figure1A) exists in all 

the investigated parameter range. This regime is unstable at low SIN values and become stable after a 
transcritical bifurcation TR2-3. From the transcritical bifurcation the unstable solution branch (2) emerges. 
The unstable regimes disappear at SN1-2 as a consequence of a saddle-node bifurcation. It is worth to note 
that for SIN belong to [TR2-3; SN1-2] three different regimes coexist and only an adequate choice of the initial 
condition can lead the reactor to operate on the desired ignited regime (1 in Figure1A). 
Figure 1B reports the phase portrait SS vs. O2

S for the steady state 1 and 2 for KL = 200 and Da = 2. In 

comparison with solution 1, the S and O2 values for solution 2 are always larger than 0.2 and a monotonic 
relationship characterize their relationship. 
To elucidate the controller effect time series are reported in Figure 2. The O2 time series for different value 
of KC was reported setting the starting point near the steady solution 1 and the set-point O2

SET = 0.5. For 
KC = 1 the controller was able to approach a steady state condition which corresponds to the solution 2. In 
this case the stability behavior of solution 1 and 2 was reversed in the closed loop system in comparison 
with the open-loop system. Indeed, the dynamic of the closed-loop was strongly influenced by the 
controller parameters. In fact, for KC = 0.3 no steady solution was approached but a period solution was 

Table 1: Dimensionless equation for closed loop system 
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Table 2: Values of input parameters of the computations.  

Model Parameter Dimensionless Parameter 

Mμ  0.26 h-1 (1)
   

KS 0.005 g/L (1) 
I SK Kβ =  6.32 
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2 2
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2O  0-7.8·10-3 g/L SETO SET Eq

2 2 2O O=  0-1 
(1) Olivieri et al. (2010) 
(2) Olivieri et al. (2011) 
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observed with large oscillation. Instead, for KC = 0.1 the system evolution was dramatic: the system 
approaches the wash-out condition with X = 0 and corresponding to the trivial solution 2. 
The solution diagrams reported in Figure 3 highlights the effect of KC (Figure 3A) and of O2

SET (Figure 3B) 
on the solution scenario. In both cases the stable regime becomes unstable as a consequence of a 
dynamical Hopf bifurcation H2-4 and stable periodic regime departs form the Hopf bifurcation point. The 
continuation schemes allows for the determination of the dynamic branches (4 in Figure 2) emerging from 
the Hopf bifurcations. The range of existence of the solution 4 was limited by an homoclinic bifurcation 
(Hom4) as indicated by the sharp increase of the time period. 
A better insight can be obtained by considering the bifurcation diagram in the plane KC - O2

SET reported in 
Figures 4 for different KL and Da values. The lines reported in this plot divide the parameter space in 

regions characterized by qualitatively similar phase portraits: Solid lines represent saddle-node 
bifurcations, dashed lines represent Hopf bifurcations and dotted lines the homoclinic bifurcations. These 
diagrams allow an easy chose the controller parameters and the operating conditions such that the 
controller was able to stabilize the steady solution 2. Four regions can be identified: 
Region 0)  the closed-loop operation is always unsuccessful since there is no solution. According to 

Figure 2 the set-point O2
SET is too low with respect to the potential of the reactor. 

Region II) the region is characterized by the two steady state solutions 1 (unstable) and 2 (stable).  
Region III) the region is characterized by the three solutions: steady-state solutions 1 and 2 and periodic 

solution 4. The closed-loop operation is not successful because both the steady-state 
solutions 1 and 2 are unstable. The periodic solution 4 is stabilized by the control action but 
the oscillation period is quite large: more than five times the characteristic time-scale of the 
system. 

Region IV)  No stable solution is present. Steady state solutions 1 and 2 are unstable. The amplitude of 
the periodic solution 4 increases so much that the periodic solution vanishes through the 
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Figure 1: Open-loop system: A) O2 solution diagram as a function of SIN for KL = 200 and Da = 2; B) Phase 

portrait SS/SIN vs. O2
S of steady state solution 1 and 2 for KL = 200 and Da = 2. 
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Figure 2: Closed-loop system: O2 dynamic for different value of KC. O2
SET

 = 0.5, KL = 200, Da = 2 , TR  = 1 
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homoclinic bifurcation Hom4 with the unstable solution 1. The steady operation under solution 
2 is stabilized in the region. 

4. Main remarks 
The dynamical analysis of a continuous aerobic bioreactor was carried out. The study regarded both a 
traditional bioreactor and a bioreactor equipped with a controller of the substrate concentration in the 
feeding stream as a function of the dissolved oxygen concentration. The effects of operating conditions 
and of controller parameters were characterized. Solution diagrams of state variables as functions of 
selected continuation parameter were assessed. Results showed that the steady state conditions unstable 
when operated in the open-loop system - e.g. state characterized by inhibiting level of substrate in the 
bioreactor - can be stabilized in closed-loop system. The bifurcation analysis suggested that the success 
of the control asks for an optimal selection of both the gain and the reset time of the controller. In 
particular, these parameters should be selected in order to avoid oscillating solutions as well as absence 
of solutions for the continuous operation.  
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Figure 3: Closed-loop system: A) O2 solution diagram vs KC, for O2
SET = 0.5, KL = 200, Da = 2 and TR = 1; 

B) O2 solution diagram vs O2
SET=0.5 for KC = 1, KL = 200, Da = 2 and TR = 1 
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Figure 4: Closed-loop system: KC vs. O2
SET bifurcation diagrams for TR = 1. 

815



References 

Agrawal P., Lee C., Lim H.C., Ramkrishna D., 1982, Theoretical investigations of dynamic behaviour of 
isothermal continuous stirred tank biological reactor, Chem. Eng. Sci. 37, 453-462. 

Agrawal T.H., Lim H.C., 1984, Analyses of various control schemes for continuous bioreactors, Adv. 
Biochem. Eng./Biotechnol. 30, 61-90. 

Chang H.C., Chen L.H., 1984, Bifurcation characteristic of nonlinear system under conventional PID 
control, Chem. Eng. Sci. 7/8, 1127-1142. 

Crooke P.S., Wei C.J., Tanner R.D., 1980, The effect of specific growth rate and yield expression on the 
existence of oscillatory behavior of a continuous fermentation model, Chem. Eng. Comm. 6, 333–342. 

Di Biasio D.H., Lim H.C., Weigand W.A., Tsao G.T., 1978, Phase-plane analysis of feedback control of 
unstable steady states in a biological reactor, AIChE J. 24, 686-693. 

Di Basio, D.H., Lim, H.C., Weigand, W.A., 1981, An experimental investigation of stability and multiplicity 
of steady states in biological reactor, AIChE J., 27, 284–290. 

Dhooge A., Govaerts W., Kuznetsov Yu. A., 2003, MATCONT: A MATLAB package for numerical 
bifurcation analysis of ODEs. ACM Trans Mathem Software, 29, 141-164. 

Edwards V.H., 1970, The influence of high substrate concentrations on microbial kinetics, Biotechnol. 
Bioeng. 12, 679–712. 

Edwards V.H., Ko C.R., Balogh A., 1972, Dynamics and control of continuous microbial propagators to 
subject substrate inhibition, Biotechnol. Bioeng. 14, 939–974. 

Fraleigh S.P., Bungay H,R., Clesceri L,S. 1989, Continuous culture, feedback control and auxostats, 
Trends Biotechnol. 7, 159-164. 

Gostomoski P., Mühlemann M., Lin Y.H., Mormino R., Bungay H., 1994, Auxostats for continuous culture 
research, J. Biotechnol. 37, 167-177. 

Haldane J.B.S., 1930, Enzymes. Longmans, London, UK. 
Hodspoka J., 1966, Oxygen-absorption rate-controlled feeding of substrate into aerobic microbial cultures. 

Biotech. Bioeng. 8, 117-134. 
Jayakumar S., Lim H.C., 1989, Multiple steady states of Methylomonas mucosa for continuous production 

of polysaccharides, J. Biotechnol. 12, 21-36. 
Lodato, A., Alfieri, F., Olivieri, G., Di Donato, A., Marzocchella, A., Salatino, P., 2007, Azo-dye conversion 

by means of Pseudomonas sp. OX1, Enzyme Microb. Technol. 41, 646-652. 
Napoli F., Olivieri G., Russo M.E., Marzocchella A., Salatino, P., 2011, Continuous lactose fermentation by 

Clostridium acetobutylicum-Assessment of acidogenesis kinetics, Bioresour. Technol., 102, 1604-1014. 
Napoli F., Olivieri G., Russo M.E., Marzocchella A., Salatino P., 2012, Continuous lactose fermentation by 

Clostridium acetobutylicum-Assessment of energetics and product yields of the acidogenesis, Enz. 
Microb. Technol. 50, 165-172. 

Olivieri G., Russo M.E., Di Donato A., Marzocchella A., Salatino P., 2010, Unstable steady state 
operations of substrate inhibited cultures by dissolved oxygen control, J. Biotechnol. 156, 302-308 

Olivieri G., Russo M.E., Marzocchella A., Salatino P., 2011, Modelling of an aerobic biofilm reactor with 
double-limiting substrate kinetics: bifurcational and dynamical analysis, Biotechnol. Prog. 27, 1599-
1613 

Pirt S.J., 1965, The maintenance energy of bacteria in growing cultures. Proc. Roy. Soc. B. 163, 224-231. 
Russo M.E., Maffettone P.L., Marzocchella A., Salatino P., 2008, Bifurcational and dynamical analysis of a 

continuous biofilm reactor, J. Biotechnol., 135, 295-303 
Rutgers M., Bogte J.J., Breure A.M., Van Andel J.G., 1993, Growth and enrichment of pentachlorophenol-

degrading microorganisms in the nutristat, a substrate concentration-controlled continuous culture, 
Appl. Env. Microbiol. 59, 3373-3377. 

Rutgers M., Gooch, D.D., Breure A.M., Van Andel J.G., 1996, Assessment of inhibition kinetics of the 
growth of strain P5 on pentachlorophenol under steady state conditions in a nutristat, Arch. Microbiol. 
165, 194-200 

Schröder M., Müller C., Posten C., Deckwer W.D., Hecht V., 1997, Inhibition kinetics of phenol degradation 
from unstable steady state data, Biotechnol. Bioeng. 54, 567-576. 

Shimizu K., Matsubara M., 1985, Conditions for the phase-plane analysis of feedback control of 
chemostat, Biotech. Bioeng. 27, 519-524. 

Viggiani, A., Olivieri, G., Siani, L., Di Donato, A., Marzocchella, A., Salatino, P., Barbieri, P., Galli, E., 2006, 
An airlift biofilm reactor for the biodegradation of phenol by Pseudomonas stutzeri OX1, J. Biotechnol. 
123, 464-477. 

Yano T., Koga S., 1969, Dynamic behavior of the chemostat subject to substrate inhibition, Biotechnol. 
Bioeng. 11, 139-153. 

816




