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In this work hydrodynamics flows with surface tension forces appearing due to fluid heating by a laser 
emission are considered.  
Several unsteady hydrodynamics model of such flows near the heating spot characterized by various 
evolution stages of the process are considered. For this model an axisymmetric flow approximation is 
used. The first class of models of unsteady flow with a spreading of the liquid layer describes the initial 
process phase. A structure of flows, where under surface tension forces the spreading of the layer on the 
substrate occurs with an unsteady velocity profile, is considered. The second class of models for long 
times takes into account the appearance of unsteady pressure gradients, which prevent the spreading. It is 
demonstrated that the pressure gradient rise and their growth lead to a generation of unsteady circulation 
flow near to the heating axis. 
New experimental data showing the flow structure near the heating spot are reported. Such flow reveals a 
complex system of convection streams. A toroidal vortex structure appears near to the heating spot, where 
convective cells join to this toroidal vortex structure from outside. 

1. Introduction 

The interfacial instability generated near the gas-liquid or liquid-liquid interface results in the appearance of 
convective flows which increase significantly mass and heat transfer across the interface (Kaminsky et al., 
1998). In addition, the convective flows may be considered as an example of dissipative structures in open 
systems. 
Hydrodynamical flows under the influence of surface tension arising from superficial flow heating are 
considered experimentally and theoretically. The dependency of the surface tension coefficient on the 
temperature leads to the appearance of so-called capillary forces (Marangoni effect), which can completely 
determine flow characteristics in the case of low gravitation (see for example Polyanin et al., 2002).  
Most theoretical approaches to this problem have considered either stationary solutions or weakly 
nonlinear disturbances to an unstable solution (Golovin et al., 1995). Most data on the structure of the 
convection flow is currently obtained from experimental investigations (see for example Karlov et al., 
2009). The main achievements in the experimental study of interfacial convection are related to the 
application of optic methods of the study of liquid surfaces (see for example Kutepov et al., 2001). Using 
these methods, one is able not only to observe directly the sequence of formation of various instable 
regimes but also to estimate the characteristic scales of instability (Karlov et al., 2002). 
Theoretical approaches for the description of unsteady convective flows are insufficient today. Exact 
solutions to the Stokes equations play an important role in forming the correct knowledge of the qualitative 
character of a flow and in certain limiting cases make it possible to calculate the generalized integral 
characteristics of a flow. In addition, these solutions serve as a starting point for constructing the models of 
transport processes in fluids based on an exact solution to convective mass and heat transfer equations 
(see Bird et al., 1960; Ganduli and Kenig, 2011). 
As an example, we consider the pattern of a flow under the effect of surface forces that arise due to elliptic 
heating of a fluid by radiation. A similar problem for a round heating spot was considered by Aristov et al., 
(2009). 
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2. Heat problem solution 

Let an optically partially transparent fluid layer with the initial thickness h0 be on an absolutely transparent 
support that coincides with the plane x, y (the thickness of the layer is measured upwards along the 
coordinate z). The layer is illuminated from above by laser radiation with an ellipse-shaped spot with the а 
and b semiaxes along the x and y axes, respectively (the origin of coordinates coincides with the ellipse 
center). Radiation passes into a fluid and is uniformly absorbed; in this case, volumetric heat release can 
be assumed to be constant throughout (due to a small layer thickness) and equal to q, and there is no 
heating of the support due to its optical transparency. An arising flow is assumed to be slow; therefore, 
convective heat transfer inside the heating region can be neglected as a first approximation. Then, the 
temperature of the fluid T inside the heating zone is described by the Poisson equation 

q,T −=Δ  (1) 

and, outside the zone, it is assumed be zero (the temperature is reckoned from ambient temperature). 
The solution to heat problem (1) has the form 
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This distribution of temperature occurs both in the bulk and on the surface of the fluid. We assume that, in 
the case under consideration, surface tension σ linearly depends on temperature on the surface of the fluid 
layer σ = σ0 – αT; then, the stress vector that acts on the surface of the fluid due to surface tension forces 
has the components 
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Let us consider several examples of solving problems for these flows under the effect of capillary forces. 

3.  Axial flows 

In the rectangular Cartesian coordinate system x, y, and z, a system of nonstationary Stokes equations is 
written as 
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 (4) 

where u, v, and w are the fluid velocity vector components; t is time; p is pressure; ρ is the density of the 
fluid; and ν is the kinematic viscosity. 
We consider the axial flow of a viscous incompressible fluid when the flow velocity vector on the z axis is 
directed along this axis. Near the z axis, the transverse components of the velocity vector are close to zero 
(tend to zero when the transverse coordinates tend to zero) and they can be expanded into a Taylor series 
in terms of the transverse coordinates x and y. If we restrict ourselves to the main terms of expansion in x 
and y in the velocity components, representation 
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can be derived. 
Substituting Eqs. (5) into (4) yields polynomials of the first degree with respect to x and y. Equating the 
coefficients of these polynomials to zero, we obtain the following equations for the sought functions fn = 
fn(z, t) and gn = gn(z, t): 
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The remaining functions w = w(z, t) and p0 = p0(z, t) are determined from the formulas 
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where w0(t) is an arbitrary function of time. 
Any flows that have two planes of symmetry are described by set of equations (6) in the neighborhood of 
the intersection line of these planes (that coincides with the z axis). Thus, solution (5) to set of equations 
(4) describes non-steady-state two-dimensional flows symmetric about a straight line; non-steady-state 
axisymmetric flows and their combinations with rotation about the z axis; non-steady-state flows in 
rectilinear impermeable and porous tubes with circular, square, elliptical, and rectangular cross sections; 
non-steady-state laminar fluid jets that issue from nozzles; etc. 

4. Steady-state flow with fluid layer spread (problem 1) 

We consider a flow when layer spreading over a support with a steady-state velocity profile occurs under 
the effect of surface stresses. It is assumed (Aristov et al., 2009) that, when this method of flow initiation is 
used, the radial pressure gradient that prevents spreading does not arise; therefore, the fluid velocity 
vector components in x, y, and z are specified by relations (5) at f2 = g1 = p11 = p12 = p22 = 0 and described 
by stationary Eqs (6) and (7) for f1(z), g2(z), w(z), and p0. The no-slip conditions are set on a solid support 
at the bottom of the layer (at z = 0) as follows: f1(0) = g2(0) = w(0) = 0. We impose the following stress 
balance conditions in the presence of surface forces on the free boundary (at z = h(t)): 
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where μ is the dynamic viscosity of the fluid and Pg is the given external pressure, which is determined to 
within an arbitrary constant. 
Based on this formulation of a hydrodynamic problem, the velocity vector components are specified by the 
relations 
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The dependence of the variations in the thickness of the fluid layer on time is determined from the velocity 
of the upper bound of the layer as follows: 
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Based on (9) and (10), we derive the equation for determining the dependence h(t) as follows: 
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Taking into account that the initial thickness of the fluid layer is h0, based on Eq. (11), we have the 
following relationship: 
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which is identical to the result of Aristov et al. (2009); i.e., the rate of layer spreading does not depend on 
the shape of a heating spot. 
However, it should be noted that the condition for the balance of normal stresses on the free surface (the 
first relation in (8)) is only valid at a thickness of the fluid layer that is close to the initial thickness. With a 
decrease in the thickness of the layer, the condition is violated, since there is a constant value in the right-
hand side of the first relation in (8) and the left-hand side decreases with time. Thus, relationships (9) and 
(12) are only valid at small spreading times. 
The balance of normal stresses at the free boundary is maintained when pressures p11 and p22 (the last 
relation in (5)), which prevent fluid spreading, appear and increase with time. Probably, a steady-state flow 
with a constant fluid layer thickness and constant radial pressure gradients can originate at large times. In 
this case, the turn of a fluid that moves in the radial direction occurs at infinity and motion is no longer 
described by relations (5) in the entire flow region. 

5. Steady-state flow in a layer with a constant thickness (problem 2) 

We consider a steady-state axial flow in a fluid layer with a constant thickness that arises under the effect 
of surface tension gradient (3). Near the heating spot, the fluid velocity vector components in x, y, and z 
are set by relations (5) at f2 = g1 =p12 = 0 and described by stationary equations (6) and (7) for f1(z), g2(z), 
w(z), and p0 at constant values of p11 and p22. On a solid support at the bottom of the layer (at z = 0), the 
no-slip conditions are set; at the free boundary (at z = h), we impose the stress balance conditions in the 
presence of surface forces (8). 
Solving Eqs. (6) for f1(z) and g2(z) and taking into account the above boundary conditions, we obtain the 
following relations for the radial components of the velocity vector: 
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It can be seen from (13) that, when there are no pressures p11 and p22 that prevent radial spreading, 
expressions for the radial components of the velocity vector are identical to similar expressions from (9). 
The steady-state values of these quantities (when p11 and p22 are constant) can be found from the 
conditions of the zero balance of the fluid flow rate in the layer through any plane (x = const and y = const), 
which have the form 
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It follows from Eqs. (13) and (14) that 
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Substituting Eq. (15) into (13), using (7) to calculate w, and taking into account that the axial velocity 
component takes on the zero value on the support (at z = 0), we derive the following relationships: 
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It follows from Eqs. (16) that the axial velocity component w also takes on the zero value on the layer 
surface h. This means that the fluid layer does not change its thickness (nonstationarity associated with a 
decrease in the thickness of the layer is absent). The thickness of the layer can be determined from the 
first condition in (8). Steady-state circulation motion arises in the layer, and the fluid flow in the radial 
direction changes its direction at z = (2/3)h. 

6. Non-steady-state flows (problem 3) 

We consider a problem similar to problem 1; however, we take into account the possibility that a non-
steady-state velocity profile will arise at small times from the beginning of motion; i.e., until constant profile 
(9) is formed. We assume that temperature distribution corresponds to Eq. (2) and generates surface 
stresses (3). The slow convective flow that arises does not change the temperature profile, and the 
pressure that prevents the radial spreading of fluid is absent. 
We assume that the components of the fluid velocity vector in x, y, and z are set by relations (5) at f2 = g1 = 
p11 = p12 = p22 = 0 and described by nonstationary equations (6) and (7) for f1(z, t), g2(z, t), w(z, t) and p0. 
The initial condition (at t = 0) is as follows: the fluid is at rest and f1 = g2 = w = 0. The stress balance 
conditions in the presence of surface forces (8) are satisfied at the free boundary (at z = h(t)). At small 
times t << h2/(4ν), the real no-slip conditions on a support are replaced by the following model conditions: 

at z → –∞: f1 → 0, g2 → 0, and w → 0. 
The formulated problem is identical (to within notation) to the first modified Stokes problem (Polyanin et al., 
2002). For the radial velocity components, we derive the relationships 

( )[ ]

( )[ ] .
νt

zh
ξ,ξξξπ

π

tν
y

ba

a

μ

qα

,ξξξπ
π

tν
x

ba

b

μ

qα
u

2
experfc

2
v

experfc
2

2

22

2

2

22

2

−
=−+

+
=

−+
+

=

 (17) 

The axial velocity component w and pressure p0 are found using relations (7). Since the expression 
between square brackets in formulas (17) is equal to unity at z = h, the velocity of the fluid on the surface 
at the beginning of the process increases with time according to the square root law. 

7. Experimental results 

In order to validate mathematical models for the convection observed at the surface of a liquid heated by a 
laser an experimental visualization of the flow is performed. The experiment is carried out in a glass cell of 
dimension 20 х 18 mm, filled with distilled water. Radiation is produced using a standard industrial CO2 
laser with a wavelength of 10.6 nm and a power of 5.5 W. Focusing of the laser beam using a mirror 
produces alight spot of elliptical shape with axes 1.5 x 0.5 mm on the liquid surface. The wavelength of the 
laser is chosen under the constraint of complete absorption of the radiation energy by the boundary layers 
of the liquid. 
Visualization of the convection flow is achieved using small particles of aluminum powder with an average 
particle size of 0.07 mm. The movement of the particles at the fluid surface completely corresponds to the 
directions of the surface flow, which is recorded by a camera. 
The experimental video shows that at all stages of the development of unsteady convection, the spreading 
of the liquid over the surface and the reduction of the thickness of the liquid layer are not detected. A local 
change in the height of liquid near the spot is also not fixed. Hence we conclude that the quasi-steady 
regime of the liquid spreading on the surface does not exist under realistic conditions. 
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Figure 1: Visualization of the fluid flow near the heating laser spot (steady regime). 

In the early stages of the heating by the laser, particles start to move from the center of the spot in the 
radial direction. As a result, close to the heating spot the flow (without particles) appears.  The size of such 
«free» space increases with time and equilibrates at a steady value equal to 1.5 - 2.5 times the size of the 
spot. Outside of this «free» zone particles show complex circular motion on the fluid surface (Figure 1). 
This result can be considered as a qualitative proof of the validity of the second and third theoretical 
models (see above). The presence of the zone «free» of particles close to the heating spot can be 
interpreted as a steady toroidal convective vortex structure near the flow axis, when the motion on the fluid 
surface occurs from the axis towards the periphery. Complex convection structures far from the heating 
spot show the limitation of the applicability of the model.  

8. Conclusions 

It is shown that exact solutions of the nonstationary problem of convection during the fluid heating by laser 
emission are derived with the linear dependence of the velocity components on two space variables of a 
nonstationary three-dimensional system of the Stokes equations that describes axial flows. 
The exact solutions of three different initial-value problems are obtained. The unsteady regime of 
developing convection is found experimentally near the flow axis (heating spot). This regime evolves 
towards the steady toroidal convective vortex structure close to the flow axis. No quasi-steady regime with 
the surface flow spreading is observed. 
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